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Section 1
Introduction

For the next-generation packet switched communications satellite system with on-
board processing and spot-beam operation, a reliable on-board fast packet switch is
essential to route packets from different uplink beams to different downlink beams. The
rapid emergence of point-to-multipoint services such as video distribution, and the large
demand for video conference, distributed data processing, and network management
makes the multicast function essential to a fast packet switch (FPS). The satellite’s
inherent broadcast feature gives the satellite network an advantage over the terrestrial
network in providing multicast services. This report evaluates altemate multicast FPS
architectures for on-board baseband switching applications and selects a candidate for
subsequent breadboard development. Architecture evaluation and selection will be based
on the study performed in Phase | and other switch architectures which have become
commercially available as large scale integration (LSI) devices.

Although the on-board FPS and the terrestrial ATM switch share many common
features and capabilities, the design of an on-board FSP has to consider many additional
factors due to the unique satellite communication environment. These factors include
mass, power, reliability, fault-tolerance, multicast, switch interfaces, capacity allocation,
and congestion control. The design issues for fault tolerance and muilticast wili be
discussed in this report. Congestion control will not be addressed in this report; it will be
addressed in the "Critical Element Design and Simulation" task. The design issues for
mass, power, reliability, and switch interfaces will be presented in the "High Level Design”
task.

The on-board FPS will not only accommodate the ATM cells but also provide services
for high-rate/wideband traffic such as the synchronous digital hierarchy (SDH) and
synchronous optical network (SONET). The satellite intemal packet format adopts satellite
virtual packets (SVPs). SVPs are served as a multi-media container to accommodate ATM
cells and other types of traffic such as SDH and SONET. The SVP header contains a
routing tag, and the on-board FPS routes the SVP to the destination solely based on the
routing tag.

This report is organized as follows.

Section 2 presents different multicast FPS architectures and a tradeoff of buffer
locations in an FPS for on-board baseband switching applications. A candidate multicast
FPS with a proper buffering scheme is selected for detailed investigations and subsequent
breadboard development.

Section 3 addresses design considerations for an on-board switching subsystem,
including output contention resolution, satellite virtual packet format, priority control,
integrated operation of circuit and packet switched traffic, and fault-tolerant design.
Specific schemes are proposed to be used in the breadboard design. Based on the
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analyses in Sections 2 and 3, high-level functional requirements for the on-board
baseband switching subsystems are developed in Section 4.

Section 5 presents a testbed configuration. Section 6 presents preliminary test plans.
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Section 2

Alternate Fast Packet Switch
Architectures

This section describes the design principles of different multicast switching
architectures for on-board baseband switching applications and the selection of the
candidate architecture for the breadboard design.

Various multicast switching architectures were extensively discussed in Reference 2-1.
Section 2.1 includes a summary of Reference 2-1 Section 6 and other multicast switching
architectures proposed recently. Nine muiticast switching architectures are described.
Section 2.2 addresses the trade-off among different buffering schemes for an FPS.
Buffering is necessary for an FPS to temporally store the packets such that output
contention and possibly intemal blocking can be resolved. Buffering locations not only
affect the switch performance, they but also determine the switch complexity. Section 2.3
reviews the switching architectures proposed in recent developments and plans and
surveys the commercially available large scale integration (LSI) switch chips for potential
space applications. Section 2.4 proposes the selected switching architecture and the
queueing scheme for the subsequent breadboard design. Based on various
considerations, the self-routing crossbar switch with input buffering is selected.

2.1 Multicast Switching Architectures

A unicast switching architecture has only one major function: routing. A multicast
switching architecture must perform two functions: copy and routing. Denote the number of
duplications required for a multicast packet as the copy factor (M) .

Some multicast switches impiement the two functions using two separate modules:
copy module and routing module. The copy module can be implemented using a space-
division approach or a time-division approach. In the space-division approach, a copy
network is employed to duplicate an exact number of copies of the multicast packet. In the
time-division approach, the input port (or the output port) duplicates the multicast packet
one by one. The space-division approach has the advantage of fast packet duplication
with the price of high hardware cost. The time-division approach has the disadvantage of
slow packet duplication, but the hardware cost is minimal. It is possible to combine the
space-division and time-division approaches for the copy module to achieve the best
compromise among different design considerations.

Others implement the two functions using one common module. These multicast
switches have the capability of copying and routing a multicast packet simultaneously.

Based on the above discussion, the multicast switching architectures can be classified
into the following four categories:
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* space-division copy network plus routing network

* time division copy network plus routing network

» space-division plus time-division copy network plus routing network
. integratioﬁ of space-division copy network and routing network.

The multicast switching architectures can also be differentiated based on where the
packet is duplicated. A multicast packet can be duplicated at a) the input port, b) the
switching fabric, and c) the output port. Clearly, for the space-division copy network, a
multicast packet is duplicated at the switching fabric. For the time-division copy network, a
multicast packet is duplicated either at the input port or at the output port. The above
classification is used for the discussion in this report.

This section presents the various multicast switching architectures as follows:
* Input Port Duplication Architecture
A.Store-and-forward at the input port
B.Store-and-forward using multiple input ports
» Switching Fabric Duplication Architecture
C. Copy network plus routing network
D. Crossbar switching network
E. Sorted-multicast-banyan switching fabric
F. Knockout switch
» Qutput Port Duplication Architecture
G. Output port duplication
H. Switching fabric duplication pius output port duplication
|. Multicast modules at the output port

The selection of a multicast switching architecture for subsequent breadboard design is
addressed in Section 2.4.

2.1.1 Input Port Duplication

There are two approaches in this architecture: store-and-forward at the input port and
store-and-forward using multiple input ports.

Before these two approaches are described, the concept of “call splitting" is introduced.
Call splitting refers to a multicast switch with the capability of splitting a multicast call into
multiple calis (either unicast calls or multicast calls). For an input-buffered FPS, there are
four ways of routing a multicast packet depending on whether a multicast packet has to be
delivered to all the destinations at the same slot or not [2-2].
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If the switch has no "call splitting" capability, then the multicast packet must be
delivered to all the destinations at the same slot. This is also referred to one shot operation
[2-3]. In other words, if at least one of the destinations of the multicast packet can not be
delivered at the current slot, the switch must retry to send the multicast packet to the
destinations at the next slot time. :

The second case is that the switch has a complete call splitting capability, i.e., the
transfer of the multicast packet to the destinations can be partially completed. And the
point-to-multipoint connection can be completed in S slots, where 1 £ S £ =. This type of
multicast switches is more flexible and provides better performance (such as throughput
and delay). However, the hardware complexity may be increased.

The third one is that the switch has a partial call splitting capability. In this case, the
point-to-multipoint connection must be completed in S slots, where 1 £ S < MAXS. If the
multicast connection can not be finished in MAXS slots, the multicast packet is dropped.

The fourth one is to utilize the strengths of the one-shot operation and the complete call
splitting capability. The advantage of one-shot operation is to expose the packets behind
the head of line (HOL) multicast packet quicker. The advantage of complete call splitting
capability is that the output link utilization is higher (compared with no call splitting
capability) since the output link will be busy as long as there are packets destined to it.
Therefore, there are two steps in the fourth scheme. The first step is to try to send muiticast
packets to their destinations using the one-shot operation. The next step is to send the
remaining multicast packets to their destinations applying the call splitting capability. Itis
claimed in Reference 2-3 that this scheme achieves the best performance for an FPS with
input queueing. The selection for the prototype developed will be determined in the “High-
Level Design" task.

A. Store-and-Forward at the Input Port

The arriving packets are stored at the input ports; in other words, the switching
architecture employs input queueing. The multicast operation is achieved by duplicating
the multicast packet one by one from the input port. The advantage of this approach is that
a point-to-point switching fabric can be used for the multicast switching fabric;
consequently, the hardware complexity is minimal. The disadvantages are the long packet
delay due the serial transfer of a multicast packet and serious congestion if the number of
duplication (copy factor) is large. An illustration of the switching architecture is presented
in Figure 2-1. ‘
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Figure 2-1: Multicast Switching Architecture A: Store-and-Forward at the
Input Port

B. Store-and-Forward Using Multiple Input Ports.

in this switching architecture, input queueing is employed. This scheme is an
improvement of the previous scheme. In the previous scheme, only one input port is used
to duplicate the multicast packet regardiess the value of the copy factor. In this scheme,
when the copy factor (M) is too large for one input port to handle, multiple input ports are
selected by on-board switch controller (OBSC) to duplicate the multicast packet in parallel.

The following presents a procedure of using multiple input ports to duplicate a multicast
packet. Designate the input port, which receives the multicast packet, as the primary input
port. Since the switching fabric only handles point-to-point connections, the primary input
port only can duplicate a single copy of the packet at a time. The primary input port sends
a copy of the multicast packet to a designated output pert. The output port relays the
packet to the corresponding input port (a secondary input port). Since there are two input
ports (the primary and the secondary) to handle the copy function, the copy factor for each

input port is —';_/-‘ If the copy factor% is still too large for one input port to handle, both

primary and secondary input ports repeat the same procedure. After one more iteration,
there are one primary and three secondary input ports to handle the copy function, and the

M
copy factor becomes >z
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To further improve the delay performance, multiple copies of point-to-point switching
fabrics can be stacked in parallel. An illustration of this scheme is shown in Figure 2-2.
Parallel copies of switching fabrics not only can improve the throughput performance of the
switch, but they also can be used as a copy network. Assume the number of switching
fabrics in parallel is 2. The primary input port sends two copies of the multicast packet to
two different destinations via two switching fabrics. The two destinations relay the muilticast
packet to the corresponding input ports (the secondary input ports). Since there are three
input ports (one primary and two secondary) to handle the copy function, the copy factor for

each input port to handle is % If the copy factor% is still too large for one input port to

handle, the same procedure is repeated. After one more iteration, there are one primary
and eight secondary input ports to handle the copy function and the copy factor becomes

M
/// NXNPTP
Nonblocking
Input Ports Switching Fabric

’3_2.
NXNPTP @ Recyle Port

Nonblocking
» N X NPTP
'y Nonblocking Output Ports
Input Ports Switching Fabri
P2

Z,
O A

Output Ports

N XNPTP
Nonblocking
Switching Fabri

Figure 2-2: Multicast Switching Architecture B: Store-and-Forward using
Multiple Inputs with Multiple Switching Fabrics
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2.1.2 Switching Fabric Duplication

In this category, the switching fabric is responsible for duplicating and routing the
multicast packet. There are two different designs depending on whether the copy and
routing functions are separated into two modules or not. Both designs are discussed in
detail below.

C. Copy Network Plus Routing Network
Two different copy network designs are discussed in the following.
C.1 Lee's and Turner's approach

In this approach, the arrival packets are duplicated using a space-division copy
network [2-4][2-5]. After the packet duplication, the routing network routes the packets to
the destinations. Tumer and Lee both use this scheme to construct their multicast
switches. The difference between the approaches is that the Lee's copy network is
nonblocking and the Tumer's blocking. Since the Tumer's copy network is blocking, the
switching elements of the copy network are buffered. The Lee's copy network is superior
than the Tumer's in several aspects: unbuffered-banyan network, nonblocking property,
and constant latency time. The Lee's copy network is used as a representative for
discussion.

~ The function of the copy network is to duplicate an exact number of copies for each
multicast packet (see Figure 2-3). This requires the incoming packets to carry a copy factor
in the header. For the copy network to be nonblocking, the copy factor must be translated
into an address interval. The translation is performed on the incoming packets
sequentially from the top to the bottom. The transiation is implemented using a running
adder network and an address interval encoder. After the packets with proper address
intervals are generated, a concentration network concentrates the packets so that the
nonblocking condition of the copy network is satisfied. Since these packets address
intervals are monotonically increasing (or decreasing) and they are concentrated, a
banyan network can duplicate the packets without any blocking. After the copies are
generated, a table is necessary to translate the header of each copy to the destination
address (routing tag). Buffering is provided in front of the routing network. The routing
network routes the packets to the destinations.

There are several disadvantages of using this approach. The first is the delay incurred
for every packet (including unicast and multicast packets) passing through the copy
network and the routing network. The second is the hardware complexity incurred by the
copy network. The third one is the out-of-sequence problem. The duplicated packets may
arrive at different input ports of the routing network at different time. If the output contention
resolution is resolved before the copy network, i.e., all the copies generated by the copy
network have a unique destination, and the routing network is point-to-point nonblocking,
there is no out-of-sequence. If the output contention resolution is resolved after the copy
network or the routing network is blocking, out-of-sequence may occur.
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Figure 2-3: Multicast Switching Architecture C.1: Lee's Copy Network Plus
Routing Network

C.2 Banyan Copy Network Plus Routing Network

In this special design, a basic banyan network is used as a copy network. There are no
running adder network or concentration network as in the Lee's design. The banyan
network is operated in time-division muitiple access (TDMA) mode. At each TDMA slot,
each input port is assigned a set of destinations. The union of these sets of destinations is
one permutation pattern of the banyan network. The destination itself is not important.
What is important is the number of destinations each input port is assigned. The
cardinality of this set is the number of copies which can be made at each slot without any
blocking in the banyan network. For unicast packet, the packet passes through the copy
network directly. For a multicast packet, the packet is duplicated at each slot to multiple
destinations of the copy network. Output contention resolution is required in front of the
copy network to guarantee that the number of copies duplicated is always equal to or less
than N.

An example is depicted in Figure 2-4. At slot 1, input ports 0 and 2 are assigned
destinations 0 and 1. Input ports 1 and 3 are assigned destinations 4 and 5. Input ports 4
and 6 are assigned destinations 2 and 3. Input ports 5 and 7 are assigned destinations 6
and 7. In this scenario, the number of copies which can be duplicated in one slot time is at
most 2. To avoid the situations that the input ports with the same destination set always
contend with each other, the destination set pattermn is changed at every slot following a
specific sequence.

The other scenario is that at slot 1, input ports 0 and 2 are assigned destinations 0, 1,
2, and 3. Input ports 1 and 3 are assigned destinations 4,5 , 6, and 7. Input ports 4, 5, 6
and 7 have no assignment at this siot time. At slot 2, input ports 4, 5, 6 and 7 have
assignment and input ports 0, 1, 2 and 3 have no assignment. In this scenario, the number
of copies which can be duplicated in one slot time is at most 4 or O.
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After the copies of the multicast packets are generated, these packets are sent through
a routing network to the final destinations. The routing network is a point-to-point
nonblocking network. Before the routing network, another stage of output contention

resolution is required.

TDMA Mode Copy Network
23) |01 §0,1) [ 8]
67) |45 45
(0,1) 2,3) J(©,1)
45 |67 |45 N |
(071) (213) (2v3) r T
45 167 (67 “
23) {01 123 —M |
67) |45 len Il

8X8
Point-to-Point
Nonblocking
Switching Fabric

"I TR

Figure 2-4: Multicast Switching Architecture C.2: Banyan Copy Network Plus

D. Crossbar Switching Fabric

Although a crossbar switch has a disadvantage of N2 growth rate of the number of
crosspoints, it has a multicast nonblocking switching fabric. There are two ways of
implementing a crossbar switch. The first scheme is to follow the traditional circuit switch
design. The crossbar switch is centralized controlled. All the crosspoint states are
reconfigured by a central processor. The second scheme is to design a self-routing
crossbar (see Figure 2-5). At each crosspoint, an address filter is implemented to extract
the packet whose routing tag matches the output port address. Several manufactures
have high-speed high-capacity crossbar switches available in the market. They all belong
in the circuit switch category. A summary of the switch characteristics is provided in
Section 2.2. It may be cost-effective to use the available crossbar switch as a building

block and construct a larger multicast switching network.

2-8 « COMSAT Laboratories



Output Contention
Resolution Module

—1 Input Port O
nable
Addressi= QD ¢ le 24
Filter =
— Input Port 1
Enabl
Addressi= ) ¢4 Q4
Fiter E=
a
| | ] " B
|
—® input Port 7
Enabl
Address_é Eb—Ob-O z—.
Filter E
Output Output
Port 0 mm= Port 7

Figure 2-5: Multicast Switching Architecture D: Self-Routing Crossbar

E. Sorted-Multicast-Banyan Switching Fabric

In this category, the switching fabric is capable of duplicating and routing a multicast
packet simultaneously. There are two variations in this category depending on the

number of sorting networks required in the implementation.

E.1 Cascaded Sorted-Multicast-Banyan Switching Fabric

The switching fabric is based on the multicast banyan network. As in the point-to-point
banyan network, the multicast banyan network has internal blocking. It is found that the
muiticast banyan network can become a nonblocking multicast switching network by using
a sorting network in front of every stage of the multicast banyan network [2-9].

Input buffering is used to hold the arriving packets. It is assumed that the input port has
the call splitting capability such that the transfer of the packet can be partially completed.
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To have a consistent operation of the switching network, empty packets are generated at
the input ports if no packets are ready to transmit at a slot time so that the total number of
packets at the switching network is always equal to the size of the switch.

The multicast routing field formats use the even and odd group concept associated with
the levels of the switching network, and they are arranged using a tree hierarchy structure
(see Figure 2-6). The definition of a level in the proposed switching.network will be
explained later. At level 1, the even group consists of the output addresses whose modulo
2 results are 0; the odd group consists of the output addresses whose modulo 2 results are
1. The addresses at level 1 consist of 2 bits which are used for routing at level 1 of the
switching network. There are four possible combinations of the 2-bit format: (1,1), (1,0),
(0,1), and (0,0) which represent the destination addresses destined to both groups, even
group, empty, and odd group.

The addresses at level 2 consist of 4 bits which are used for routing at level 2. The first
2-bit field is associated with the even group at level 1 and the second 2-bit field is
associated with the odd group at level 1. Examine the first 2-bit field. The subeven group
within the even group at level 1 consists of the addresses whose module 4 results are 0
and the subodd group within the even group at level 1 consists of the addresses whose
module 4 resuits are 2. Examine the second 2-bit field. The subeven group within the odd
group at level 1 consists of the addresses whose module 4 results are 1 and the subodd
group within the odd group at level 1 consists of the addresses whose module 4 results are
3.

In general, for a switching network with size N, the addresses at level m consist of 2m
bits, where 1 <m < Log2 N. The size of the multicast routing tag is 2N - 2.

It can be observed that at stage 1 of the multicast banyan network there is no blocking if
only one of the following three situations is allowed to occur at each switching element.

* one packet which destined to both groups and the other packet is an empty
packet.

* two packets where one packet is destined to one group and the other is
destined to the other group

* one packet which destined to only one group and the other packet is an
empty packet.

In order to achieve the above objective, a sorting network is used to rearrange the
pattern of the arriving packets. The sorting network sorts the packets using the 2-bit field
atlevel 1. Let the sorting network sort the packets into non-ascending order. After the
sorting procedure, the sequence of the packets appears at the outputs of the sorting
network is: both groups, even group, empty, and odd group.

Using a shuffle interconnection to connect from the outputs of the sorting networks to

the inputs of stage 1 of the banyan network, it is guaranteed that there is no blocking at
stage 1 (see Figure 2-7).
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It has been shown that there is no blocking at level 1 of the network, where level 1
consists of one sorting network with size N and stage 1 of the banyan network.

The operation of each switching element at stage 1 of the banyan network is described
as follows. The switching element routes the packet to the upper link if the 2- bit tag is
destined for the even group; it routes the packet to the lower link if the 2-bit tag is destined
for the odd group; it routes and copies the packet to both links if the 2-bit tag is destined for
two groups. The empty packet is deleted if the other packet at the other input is destined to
both groups; otherwise, the empty packet is sent to the next level. In summary, the 2-bit
routing bits at level 1 are used for sorting for the N X N sorting network and routing for
stage 1 of the banyan network.

After level 1, the packets have been divided into two groups according to the
destination routing tags; the packets destined to the even group are routed to the upper
subnetwork and the packets destined to the odd group are routed to the lower subnetwork.
Level 2 of the routing tag is used for routing at level 2 of the network which consists of two
sorting networks with size N/2 in parallel and stage 2 of the banyan network. The upper
subnetwork (or the lower subnetwork) consists of one sorting network with size N/2 and the
upper half (or the lower half) of stage 2 of the banyan network.

The upper subnetwork with size N/2 uses the first 2 bits at level 2 of the routing tag for
routing, and the lower subnetwork with size N/2 uses the second 2 bits at level 2 of the
routing tag for routing. The same routing procedure as in level 1 is applied at each
subnetwork.

This operation is repeated at every level until the last level. At the last level, the size of
each subnetwork is 2. Hence, no sorting network is required in this level. The last level of
the network only consists of stage Loga N of the banyan network.

The output ports of the switch check the routing tag of the arriving packet to determine it
is an empty packet or not. If it is an empty packet, it will be discarded. The logic to perform
this operation is very simple, which only needs to check a 2-bit field.

E.2 Sorted-Banyan-Based with Recycling

This approach is a modified version of Architecture E.1. Only one sorting network and
one stage of the banyan network is required. However, the sorting network and the routing
stage are reused multiple times. In this approach, time is traded with space. In order to
reuse the sorting network, the sorting network not only can sort the arrival packets based
on their destination addresses, but it also can be reconfigured to sort multiple groups with
a smaller size in parallel. For example, an 8 X 8 sorting network can sort a group of size 8
or two groups of size 4 in parallel. At cycle 1, the sorting network sorts a group of size 8. At
cycle 2, the sorting network sorts two groups of size 4 in parallel. In general, the multicast
function can be finished in Logz N cycles.
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F. Knockout Switch

The knockout switch shown in Figure 2-8 uses the bus approach to interconnect the
inputs and outputs [2-10]. There are N broadcast buses, one from each input port, in the
switch and there are N filters at each bus interface of the output port. The total number of
filters for the switch is N2. )

There is a disjoint path between each input and output pair. The switching fabric is
point-to-multipoint nonblocking. Since the format of the point-to-point routing tag is
different from the point-to-multipoint routing tag, the filter design will be different for both
cases. N filters at each output port performs as N receivers which can receive N arriving
packets at the same time. After the N receivers, there is one output buffer which performs
as a statistical multiplexer. The amount of buffering required at each output port depends
on the packet loss ratio requirement.

The main disadvantage of the knockout switch is that the hardware complexity of the
output port interface is very high for a large size.
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Input Port N-1I - g
sen aRn
| | \
. Packet
Filters
N:L
Knockout aes
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Output Port 0 vas Output Port N-1
‘ N Outputs *

Figure 2-8: Multicast Switching Architecture F: Knockout Switch
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2.1.3 Output Port Duplication
G. Output Port Duplication

In this scheme, packet duplication occurs at the output port. Designate the first
destination of multiple destinations of the multicast packet as the primary destination. The
input port sends the multicast packet to the primary destination first. The output port send
the packet to the output line and duplicates one copy of the multicast packet. The copy is
recycied back to the corresponding input port. Since the number of copies generated each
time is only one, this scheme is equivalent to Architecture A: store-and-forward at the input
port.

H. Switching Fabric Duplication Plus Output Port Duplication

The switching fabric comprises buffered switching elements. The switching network
topology is a banyan network with extra stages [2-11]. The extra stages are used to
duplicate the multicast packet. This switch can duplicate C copies of a multicast packet,
and route one of the (C) copies to the destination at one time. The value of C depends on
. the number of extra stages and the destination pattem of the multicast packet. Clearly one
extra stage can generate at most two copies. Two extra stages can generate at most four
copies; and so on.

Before describing the multicast operation, the concept of primary destination of a
multicast packet is introduced. If multiple destinations are not continuous, any destination
can be the primary destination. If some of the destinations are continuous, the first
destination in the continuous group is designated as the primary destination. Note the
condition that the extra stages can duplicate the packets without blocking is all the
destinations are continuous. Therefore, the switching fabric duplicates the packet only
when some of the destinations are contiguous. Otherwise, the output port simply
duplicates one copy of the multicast packet and recycles the copy back to the
corresponding input port.

The input port sends the muiticast packet to the primary destination. When the
multicast packet passes through the switching fabric and the output port, C copies of the
packets are generated. As discussed above, the value of C is a variable. These C copies
are recycled back to different input ports. The same procedure repeats until the number of
copies generated is equal to the copy factor.

Three examples are given below. Assume the banyan network has two extra stages.
Example 1: assume the destinations are (0,1). Then only the last stage duplicates the
multicast packet. It takes two cycles to finish transmission of the multicast packet. Example
2: assume the destinations are (0,1,2). The last two stages are used to duplicate the
multicast packet. It takes two cycles to finish transmission of the multicast packet. Example
3: assume the destination are (0,3,5). Since the packet destinations are not contiguous,
the packet duplication only occurs at the output port. It takes three cycles to finish
transmission of the multicast packet. :
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I. Multicast Modules at the Output Port

In this approach, there are multiple multicast modules at the output ports. All the
multicast packets are relayed to these multicast modules first through a point-to-point
nonblocking switching fabric. And then the multicast modules send the multicast packet to
the destined output ports through a point-to-multipoint nonblocking switching fabric (see
Figure 2-9). The number of multicast modules required depends on the amount of
multicast traffic. )
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Figure 2-9: Multicast Switching Architecture I: Multicast Modules at the
Output Port

The multicast knockout switch uses a similar approach [2-12]. The knockout switch
uses a bus to interconnect the inputs and outputs. There are N broadcast buses in the
switch for the point-to-point applications. For point-to-multipoint applications, extra
multicast modules are required. If there are M multicast modules, then the total number of
buses is N + M and the size of the switch becomes N X (N+M). There are (N+M) filters at
each bus interface of the output port, where each filter is for one input; hence, the total
number of filters for the switch are N2 + NM. it can be seen that the complexity of the bus
interface is very high. The desired point-to-point switching fabric should be a banyan-type
network or a crossbar, which is assumed to be the switching fabric in the discussion below.
If a banyan-type network or a crossbar is used as the switching fabric, then the number of
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filters necessary for the bus interface at each output port is only M, where M is the number
of multicast modules.

The output port reservation scheme (such as the centralized ring reservation scheme)
is coupled with the multicast module scheme so that the output port reservation scheme
can be done not only for point-to-point connections but also for multicast connections. The
output port reservation scheme, which is one of the output contention resolution schemes,
will be discussed in detail in Section 3.1. The multicast module is treated as one of the
input ports by the output reservation module. The start of the token stream altemates
among N input ports and m multicast modules. A multicast packet in the multicast module
may be destined to several destinations. Among these destinations, some are free and
some are busy during the output reservation process. As before, it is assumed that the
multicast module has the call splitting capability such that the transfer of the multicast
packet can be partially completed.

2.2 Tradeoff of Buffer Locations for a Fast Packet Switch

Buffering is a necessity for a fast packet switch to temporally store the packets such that
output contention and possible intemal blocking can be resolved. In general, there are
three possible buffering locations in a fast packet switch: input buffering, internal buffering
and output buffering.

The trade-off among different buffering locations for an FPS is discussed in this
subsection. Buffering locations not only affect the switch performance, they but also
determine the hardware complexity. The buffering strategy for the proposed FPS
candidate, which improves the switch performance without introducing much hardware
complexity, is recommended at the end of this subsection.

For the intemal buffering approach, the buffers are implemented in every switching
element and packets use the store-and-forward scheme to move from one stage to the next
stage. The intemal buffering approach has the following disadvantages: more hardware,
higher queueing delay, out-of-sequence (if alternate paths exist in the switching network),
and difficult fault-diagnosis. For the above reasons, the intemal buffering approach is not
considered for subsequent development.

Due to the statistical nature of packet switching, output contention always occurs in an
FPS; as a result, input buffering is necessary (for a multicast crossbar) to schedule the
packet transfer and resolve output contention (and possibly intemal blocking). To improve
the throughput of a switch with input queueing, there are three basic approaches. The first
one is to increase the switch speed and the second ong is to use parallel switches. The
third one is to design a very efficient output contention resolution scheme. Alternate output
contention resolution scheme are presented in Section 3.1. For the first two methods,
since more than one packet can arrive to the output port at the same time, output buffering
is also necessary.

It is possible to create a contention-free switch. A contention-free switch is defined as a

switch whose output port can receive up to N packets in one link siot time. For a
contention-free switch, only output buffering is necessary. When the speed switch is

2-16 « COMSAT Laboratories



increased N times of the link speed and the switching fabric is point-to-multipoint
nonblocking, the resulting fast packet switch is contention free. The speedup factor (S) is
defined as the ratio of switch speed and link speed. If the number of switching fabric
stacked in parallel (P) is N, the number of receivers at the output ports is N and the
switching fabric is point-to-multipoint nonblocking, the resulting fast packet switch is also
contention free. : :

Although a contention-free switch eliminates the input queue, the high speed
requirement or the high hardware complexity make this method feasible only for a switch
with a very small capacity. The contention-free switch will not be considered for the
subsequent development. By allowing output contention to occur, the speed requirement
and the hardware complexity can be reduced. The possible configurations of the fast
packet switch with different S and P are illustrated in Table 2-1.

Table 2-1A: Correspondence Between Buffering Locations and Switch Speedup

switch speedup [S=1 1<S<N S=N
(S)

input buffering  input buffering + output buffering output buffering

Table 2-1B: Correspondence Between Buffering Locations and Parallel
Switches

parallel switch P=1 1<P<N P=N
(P)

input buffering  input buffering + output buffering output buffering

2.2.1 Output Queueing

The queueing model for a nonblocking switching fabric with output queueing has been
studied in [2-10][2-11]. The derivation of the average output queue length follows that for
the M/G/1 queueing system [2-12]. The assumption of the queueing analysis is that the
packet arrival process is independent and it follows the identical Bernoulli process. The
destination distribution of packets is uniform. Derivation of the queueing equations to
obtain the average queueing length, throughput and CLR is provided in the Appendix A of
Reference 2-13. Please refer to it for details. The switch throughput can potentially reach
1. However, the queueing delay will be infinite when the switch throughput is close to 1. A
desirable throughput for a switch with output queueing should be around 0.9.
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2.2.2 Input Queueing

The queueing analysis for a nonblocking switching fabric with input queue and first in
first out (FIFO) buffers was researched in [2-10][2-11]. Due to the head of line blocking
(HOL) problem, the switch throughput is bounded by 0.586 for a larger N. The saturation
throughput and queueing length were derived analytically. A summary of the queueing
derivation for the switch throughput is provided in Appendix A.

As previously discussed, besides increasing the switch speed and use parallel
switches, the third approach to increase the throughput of the switch is to design a more
efficient contention resolution algorithm. One of the possible algorithms is to use non-FIFO
input queue with the windowing scheme. More discussion on this subsection is provided
in Section 3.1 If the first packet is blocked due to output contention, the scheduling
algorithm also examines the packet on the back of the first packet. The number of packets
examined each time depends on the preset window size or the "checking depth”. The
saturation throughput for different switch sizes and checking depths are provided in Table
2-2 [2-11]. The saturation throughput for different checking depths is obtained using
simulation.

Table 2-2: Saturation Throughput for Different Switch Sizes and Checking

Depths.

N\checking 1 2 3 4 5
depth

2 0.75 0.84 0.89 0.92 0.93
4 0.66 0.76 0.81 0.85 0.87
8 0.62 0.72 0.78 0.82 0.85
16 0.60 0.71 0.77 0.81 0.84
32 0.59 0.70 0.76 0.80 0.83
64 0.59 0.70 0.76 0.80 0.83

From the above table, a large checking depth is an effective way of improving the
switch throughput. However, the improvement of throughput gets less when the checking
depth gets larger. increasing the switch speed to further increase the throughput may be
necessary.

2.2.3 Input Queueing Plus Output Queueing

In general, providing P parallel switches and increasing the switch speed N times
faster have exactly the same effect in improving switch performance when P = N. This
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result is the well known trade-off between space and time. For this reason, this subsection
only discusses the effect of increasing the switch speed. Although the switch speedup S
does not have to be an integer, for easy queueing analysis, the switch speedup S is
assumed to be an integer. Since the switch operates S times faster than the link speed, in
one link slot, there are S switch slots, where one switch slot is defined as the ratio of the
packet size and the switch speed. The output port will, at most, receive S packets in one
link siot time. Since the output port may receive more than one packet in one link siot time,
output queueing is necessary to store the packets. The switch can process the S packets
at the input port in one link slot. Now the question is how many packets per input port the
switch can send in one link slot time after the switch is operated S times faster. The first
solution is to allow the switch to send, at most, one packet at the input queue in one link
slot [2-14][2-15][2-16]. That is to say if the HOL packet is sent out at an input port, the next
packet in the queue can not be advanced to the HOL position until the next link slot time.
The saturation throughput for different values of S is provided in Table 2-3 [2-15].

Table 2-3: Saturation Throughput for Different Values of Speedup Factors

Speedup Factor (S) | Saturation Throughput
0.5858

0.8845

0.9755

0.9956

0.9993

0.9999

]

ojonipsrjOIN]

8

Using this approach, the correspondence between time (S) and space (P) does not
exist any more.

The second solution is that the switch can send from one up to S packets at the input
port in one link slot time. The improvement of the switch throughput is proportional to the
switch speed. There is a correspondence between time (S) and space (P).

In terms of implementation, both approaches present little difference. However, the
improvement of the switch throughput for the first approach is limited. The first approach
underutilizes the advantages provided by increasing the switch speed.

The queueing analysis presented in Appendix A is also applicable in this scenario.
The system can be modeled as a tandem queue (two queues in series): the virtual queue
at the input port and the output queue. The trade-off between the input queueing and
output queueing can be discussed in terms of two system performance measurements: the
queueing delay and the packet loss ratio. The queueing delay is the sum of the virtual
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queueing delay and the output queueing delay. Although the queueing delay is
analytically solvable, it is not easy to obtain the queueing equations for the packet loss
ratio. The packet loss ratio is the sum of the packet loss ratio for the input queue and the
packet loss ratio for the output queue. It is expected that the packet loss ratio must be
obtained using simulation. The derivation of the switch throughput when the switch is
operated twice faster than the link speed is presented in Appendix A.

From the discussion in [2-10][2-11], the queueing delay and packet loss ratio of the
packet switch with output queueing outperforms those of the packet switch with input
queueing.

Evidently, the amount of buffer at the input queue and the output queue depends on
the switch speed. When the switch speed is low, more buffer should be placed at the input
queue. When the switch speed is high, more buffer should be allocated at the output
queue [2-16].

2.2.4 Buffer Size Requirement

The buffer requirement for an 8 x 8 contention-free switch with output queueing can be
computed using queueing analysis when packets arrivals follow Poisson distribution.
Derivation of the packet loss ratio (PLR) as a function of the buffer size is given in
Reference 2-13. The results are shown in Figure 2-10. With a buffer size of 100, the PLR
is 10" when the link utilization is 0.92. The maximum achievable throughput for the
contention-free switch with output queueing is close to 1.0.

The buffer requirement for an 8 x 8 switch with input queueing when packets arrivals
follow Poisson distribution was obtained using simulation approach [2-1]. The buffer size
required to achieve a PLR of 109 is around 100 when the link utilization is 0.55 and the
maximum throughput is 0.6.

For a switch with input queueing and output queueing, the buffer size requirement for
input port and output port is not symmetric. When the speedup factor is low, the throughput
of the switch is not large enough to accommodate the incoming traffic; hence, most packets
are accumulated at the input port. Increasing the switch speed, the packets accumulation
starts shifting from the input port to the output port. When the speedup factor is high
enough, most packets are accumulated at the output port. Note the throughput of the
switch is the arrival rate of the output queue. If the speed continues to increase, the input
queue length can be made very small. This result suggests that we shouid increase the
switch speed as high as possible to largely increase the throughput so that most packets
are accumulated at the output port. 1t should be noted when the incoming traffic is
unbalanced and/or time varying, the throughput of the switch degrades and, as a result, the
packets may be accumulated at the input port. The other consideration is that when faults
occur in the switch subsystem, the throughput performance degrades, and as a result,
packets are also accumulated at the input port. Hence, an adequate size of buffer should
always be provided at the input port as a safety margin.
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Since a large number of packets are accumulates at the output port, some output
buffers may be full and packets will be dropped. The flow control scheme to prevent
packet loss at the output port is investigated latter.

From the above discussion, a general guideline to choose the buffer size is that if the
Patio of link utilization and throughput is about 0.9, the buffer size required to achieve a
CLR of 10°9 is about 100 packets. For bursty traffic, the amount of buffer size to achieve the
same PLR will be increased. The amount of increase depends on the traffic characteristics
(such as burstiness, peak rate and burst length).

o
-8~ pir(u=0.8)
T pir(u=0.85)
+*= plr(u=0.9)
pir log)
< plr(u=0.92)
X -s= plr(u=0.94)
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A\ Ny A & plr(u=0.95)
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pir. packet loss ratio
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size of switch: 8 buffer size

Figure 2-10: PLR vs Buffer Size for an 8 x 8 Contention-Free Switch with
Output Queueing '

A general comparison table for input queueing, output queueing, input and output
queueing, and intemal queueing are provided in Table 2-4. This tables compares the

following:
« the methods to improve the switch performance

- larger checking depth
- switch speedup
- parallel copies
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- larger switching element size

» types of blocking encountered in the switch

» throughput

* ability to perform speed and format conversion

* output contention resolution mechanisms

« fault-diagnosis and hardware complexity

Table 2-4: Comparison of Different Queueing Strategies

InputOutpu]  Internal

Input Buffering Output Bufferin X X
P ¥ P g Buffering | Buffering
Nonblocking Blocking Nonblocking Crossbar . Nonblocking Crossbar
Crossbar Banyan-Type or Banyan-Type Knockout Switch of Banyan-Type
or Banyan-Type
Larger Checking | applicable applicable (with o no applicable gpplicable
Degpih (d) parallel copies)
1S <N 15S<N 8=N §=1 1<S<N 1<8<N
Speed Up Factor (S) | (required output (required output
butfering) buffering)
Muttiple paralie! applicable applicable applicable no applicable appiicable (out-of-seq
copies (P) problem)
Larger Switching | no applicable no no o appicable
Element Size (D}
Head of Line yes yes no no yes yes
Blocking
internal Blocking no yes no no n yes
Output Contention yes yes no yes yes yes
Format Conversion | no n yes yes yes no
{Speed Conversion)
Output Contention | » output reservation | path setp contention free output filter * output reservation at | Store-and-forward
Resolution a input ports inpt ports
» path setup .. » path setup
Throughput 58% <58% 100% 100% 258% and < 100% 2587; {3buffers or
more)
Fautt-Diagnosis easy easy easy easy easy hard
Hardware Complexty | low/medium ow high high medium high

» Throughput and packet transfer delay can be improved by adjusting the value of d, S, P, and/or D
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A fast packet switch with input queueing has the least hardware complexity. For on-
board processing applications, the input-queued FPS should be chosen. However the
throughput of a switch with input queueing is limited at 0.58. There are two recommended
approaches. The first one is to design a very efficient scheduling algorithm to largely
improve the throughput. Since the switch speed is not increased, output queueing is not
necessary. The second one is to use the basic scheduling algorithm (such as centralized
ring reservation scheme) and increase the switch speed. The drawback of this scheme is
that output queueing is required. More discussion on scheduling (or output contention
resolution) is provided in Section 3.1.

2.2.5 Flow Control for a Fast Packet Switch with Input
Queueing and Output Queueing

Queueing packets at the input port is required for an FPS with nonblocking switching
fabric to resolve output contention, and queueing packets at the output port is necessary if
the switch speed is increased to improve the throughput. This subsection discusses the
flow control scheme to prevent buffer overflow at the output queue [2-17].

The output contention resolution scheme at the input ports can be implemented with
the output port reservation scheme. The output port reservation scheme is assumed to use
the centralized ring reservation scheme. In this case, the flow control algorithm is very
straightforward. If one output port is congested, no packet is allowed to send to the output
port from the input ports. Since the packet has to reserve the output port before
transmission begins, by removing the token associated with the congested output port in
advance, no input port can request the congested output port. Although the input port can
not send any packet to the congested output port, an output port congestion indication may
have to send to the input ports so that the situation between an output port is busy (due to
contention) and an output port is congested (due to congestion) can be distinguished. The
immediate drawback of this scheme is that the HOL blocking problem at the input queue is
worsened by the flow control scheme. The reason is that the packet destined to the
congested output port will remain in the HOL position for sometime and the result is that
the throughput of the switch degrades. One approach is to use a larger checking depth.
The other approach is to put the packets destined to the congested output port to a
separate queue for temporal storage. There are two separate queues in the input port.
The congested queue is used to store the packets whose destination is in congestion. The
normal queue is used to store the packets whose destination is not congested.

Since the arrival time of the packets in the congested queue are ahead of the packets
in the nomal queue, it is reasonable to give priority to the packets in the congested queue
over the normal queue. !n operation, the input port always check the congested queue
first. If the destination of the HOL packet in the congested queue is still in congestion, the
packet can not be transmitted because the token associated with the congested output
port has been removed. As a result, the input port will check the normal queue. Note with
this arrangement, the packet will not be transmitted out-of-sequence.

The interactions between the congested packet and the normal packet is separated
using the two-queue scheme. Note that when an input port receives a congestion
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notificaﬁon from the congestion controlier, the input port only checks whether the HOL
packet in the normal queue is destined to the congested output port or not; the input port
does not check the HOL packet in the congested queue.

If the buffer space in the congested queue is full, there are two options: the packets will
either stay in the nommal queue without transferring over to the congested queue or the
packets will be dropped. We may expect that to use the buffer more efficiently, the
congested packet should stay in the normal queue if the congested queue is full.

However, if the congested packet stays in the normal queue, the switch throughput is
degraded due to the HOL blocking problem in the normal queue. Which option is more
efficient in reducing the packet loss will be determined using simulation. It is expected that
by shifting the congestion between the input buffer and the output buffer, the bufter space
can be utilized most efficiently, a short term traffic congestion can be absorbed, and the
packet loss can be reduced to a minimum.

The following discussion addresses the necessary modification for muiticast traffic. If
any one of the destinations of the multicast packet is in congestion, the input port will finish
transmitting the muiticast packet to different non-congested output ports first. Then the
input port will store the multicast packet in the congested queue. It is possible that more
than one of the destination output ports are in congestion. To simplify the input port
function, the multicast packet will be split into point-to-point packets before being stored in
the congested queue. After this, the function of the input port is the same as that in for
point-to-point traffic.

2.3 Recent Developments and Plans for ATM Switches

This subsection is to review the switching architectures used in the recent
developments of fast packet switching systems/chips for potential on-board applications.

Different terms have been used for referring to the fast packet switching technology.
The United States uses fast packet switching, Europe uses asynchronous time division
switching, CCITT uses ATM switching, and AT&T uses wideband packet switching.

Since packets are self routed through the FPS, several packets from different input
ports may be destined to the same output port at the same time. This situation is referred
as output contention. If this occurs, output contention resolution has to be performed such
that only one packet is allowed to be transmitted to the output port. The output contention
resolution scheme along with the switching architecture must be designed carefully such
that the quality of service (QOS), such as PLR, of different connections can be maintained.

A large number of telecommunications manufactures have announced that they will
develop ATM switches. However, it may take another one or two years before the ATM
switch products can be seen in the market. For those available ATM switches, the
switching architectures, output contention resolution schemes, and technologies are
addressed.
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2.3.1 Switching Systems

2.3.1.1 Fujitsu's FETEX-150 ATM/STM Switch

The switch architecture is named MultiStage Self-Routing (MSSR) switch [2-18]. To
increase the switch throughput, the switch speed is faster than the link speed. The internal
blocking and output contention problems are resolved using the 3-stage configuration,
buffered self-routing modules (SRMs), and the token reservation scheme. The 3-stage
configuration creates multiple paths between each input and output pair. The path
selection is done at the call setup phase by the call processing module.

The self-routing module basically is a buffered crossbar. A.new arrival packet is stored
in the buffer at the crosspoint between the inlet and the destined outiet. To reduce the
buffer size, all the buffers belonging to the same outlet are shared by different crosspoints.
Since multiple packets stored at different buffered crosspoints may be destined to the
same outlet, a token ring is established to resolve output contention for each outlet.

The technology of the large scale integrated chips (LSICs) is Bi-CMOS logic gate array
with ECL interface.

The ATM switch is sold as a whole package. They do not sell individual switching
chips.

2.3.1.2 AT&T BNS-1000 Fast Packet Switch

The BNS is a cell relay switch based on ATM protocol. This switch is designed to be
used with switched multimegabit data service (SMDS), X.25, ISDN, frame relay, and other
broadband services. The switch architecture is not available.

2.3.1.3 Adaptive ATMX Switch

The switch will offer service for local area network (LAN) traffic. The switching
architecture uses a crossbar. The link speed is 100 Mbit/sec. The switch capacity is 1.2
Gbit/sec. The switch with one six-port card sells at price $45000. It is worth mentioning
that the Transwitch is licensed by Adaptive to design the ATM segmentation/assembly chip
sets. The ATM adapter card for SPARCstation is sold for $4500.

2.3.1.4 MPR Teltech AtmNet Switch

The switch offers services for LAN, WAN, and telephone carrier networks. The ATM
switch module has a size of 4 X 4. Itis a nonblocking switching fabric and the link speed is
160 Mbit/sec. The switching architecture is not available. The switch module adopts
output queueing scheme. An ATM switch is comprised of switch modules, transmission
cards, service adaptation cards, power supply cards, alarm cards, and controlier cards.
Every card contains a microprocessor. The switch supports multicast function and
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bandwidth management. The switch can be expanded up to 32 x 32'by cascading switch
modules in multiple stages. The price of the switch module is $3200.

An eight port switch card is under development. The switch will support 620 Mbit/sec
link speed. )

2.3.2 Switching Chips

2.3.2.1 Triquint (TQ8016) Multicast Crossbar

The architecture uses a centralized contro! approach [2-20]. The switching architecture
can be considered as N N x 1 multiplexers (selectors) stacked in parallel. There are two
sets of N output registers, where one output register is for one N x 1 multiplexer. The Logo
N bit-wide output register is used to select one input line from the N input lines. This two-
set architecture allows the switch to operate in a ping-pong fashion. The connection
between an output and an input has to be reprogrammed each time a packet comes in.
The procedure of setting up a connection between an output and an input is described as
follows. The output register for one multiplexer is enabled first. And then Logy N bits of the
input address are loaded into the output register.

The switch state is completely reconfigured by loading the output registers with N input
addresses (sequentially). Although the multicast crossbar is not a self-routing architecture,
as long as the switch state reconfiguration time is less than 2.72 usec, the crossbar can be
used as an ATM switching fabric. An output contention resolution module is required.

The switch size is 16 x 16. The link speed is 1.3 Gbit/sec. The data interface supports
ECL and the control interface supports CMOS. The power consumption is 6.8 watts. The
reconfiguration time is 0.33 usec. Using extemal addressing logic, a 32 x 32 switch can be
constructed using 4 16 x 16 chips. The technology uses GaAs.

2.3.2.2 AMCC (S2024) 32 x 32 Crossbar

The switch size is 32 x 32. The chip supports two link speeds: 400 Mbit/sec and 800
Mbit/sec [2-21]. For synchronous operation, a clock is required to feed into the chip. The
link speed is 400 Mbit/sec. For transparent operation, no extemal clock is required. The
link speed is 800 Mbit/sec. The data interface supports ECL and the control interface
supports TTL. The power consumption is 9.9 watts. The reconfiguration time is 0.21 usec.
A 64 x 64 switch can be constructed using 4 32 x 32 chips without any external addressing
logic. The technology uses Bipolar. An output contention resolution module is required.

2.3.2.3 Vitesse (VSC864) 64 x 64 Crossbar

The switch size is 64 x 64 and the link speed supported is 200 Mbit/sec [2-19]. There
are two operations depending one whether an extemal clock is required. For clocked
operation, a clock is required to feed into the chip. For flow through operation, no extemnal
clock is required. The data interface supports ECL and the control interface supports ECL.
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The power consumption is 10 watts. The reconfiguration time is 0.44 psec. A 128x 128
switch can be constructed using 4 64 x 64 chips with external addressing logic. The
technology uses GaAs. An output contention resolution module is required.

A general comparison (in terms of size, port speed, power, reconfiguration time, skew
time, price, etc) among the three commercially available crossbars is provided in Table 2-
5. )

Table 2-5: A General Comparison Among Three Commercially Available

Crossbar Switching Chips
Manufacturer size | port speed |interface broadcast power reconfig.
mode time
Triquint (TQ8016) | 16 1.3 Gbit/s |data ECL DO to 6.8 watts |0.33ps
ctit CMOS | 0O0-O15
AMCC(52024) 32 400 Mbit/s | data ECL no 9.9walts |0.21pus
800 Mbit/s ol TTL
Vitesse(VSC864) | 64 200 Mbit/s | data ECL no 10 watts 0.44 ps
ctl ECL
lower speed expandability diagnostic availability price
operation
' yes 4 chips for expansion to | no now $223.0
size 32 and ext.
addressing logic.
yes 4 chips for expansion to | no now $700.0
size 64.
yes 4 chips for expansion to | examine the now $1096.0
size 128 and ext. contents of control
addressing logic. register and its
operation
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space radiation | modes Time crosstalk heat sink
Skew
GA transparent 0.4 ns not available thermalloy
| Implementation .
Bipolar synchronous 0.5ns not available come with the chip
Implementation transparent 0.5ns
GA clocked 1.5ns insignificant for | (2.3 inch) IERC
implementation 4.\ through  |2.4ns | di0it&! E079X2.308B
fault reliability number of BER propagation
tolerance pins delay
no not available 132 not 1.2ns
available
no not available | 196 10-12
2.96 ns
no 50 FITS 344 1013
6.5 ns

2.3.3 Experimental Switching Systems/Chips

2.3.3.1 Alcatel 16 x 16 ATM Switching Element

The link speed is 600 Mbit/sec and the size of the switching element is 16 x 16 [2-22].
A shared buffer is provided in the switching element. The switching element provides
multicast function and priority control. Since the switching elements are buffered,
contention resolution uses the store-and-forward approach.

The technology forecast in 1992 is the CMOS.

2.3.3.2 Hitachi 32 x 32 Shared-Buffer ATM: Switch

The link speed is 155.52 Mbit/sec and the switch size is 33 x 33, where 32 ports are
used for data and one port is used for control [2-23]. The switch uses a shared buffered
memory switch (SBMS) architecture. The switch has a shared buffer of size 4096 cells.
The buffer size is reduced compared with that of non-shared buffer switching architectures.
Since the switch uses the internal buffering approach, store-and-forward is used for
contention resolution. A 32 x 32 155.52 Mbit/sec switch can be converted into an 8 x 8 600
Mbit/sec switch by modifying the control logic. The switch provides multicast function and
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priority control. The 32 x 32 switch can be expanded to a large-scale switch. The
technology used is CMOS.

2.3.3.3 Toshiba 8 x 8 Shared-Buffered ATM Switch

The link speed is 155 Mbit/sec. The switch has a shared buffer of size 184 cells.
Contention resolution uses the store-and-forward approach. The 8 x 8 switch can be
expanded to a large-scale switch using the Clos switching architecture. To increase the
switch throughput, flow control between switching elements is employed and the switch
speed is faster than the link speed. Multiplexing sequence for input lines is rotated to
achieve the faimess of sharing the buffer. The technology used is Bi-CMOS. -

A complete 64 x 64 ATM experimental switching system has been developed using the
8 x 8 switching elements [2-24]. They claim that the switch system exhibits the best
switching performance (PLR and delay) comparing with other reported switching systems.

2.3.3.4 Mitsubishi ATM Switch

The switch operating frequency is 78 MHz. The technology uses Bi-CMOS. The
switching architecture is not available.

2.3.3.5 NEC ATOM Switch

A trial ATM switching system has been built at NEC [2-25]. The architecture of the ATM
output buffer modular (ATOM) switch uses a time division multiplexing (TDM) bus with
output buffering. This is a contention-free switching architecture. All the input streams are
multiplexed into a high-speed TDM stream. An address filer at each output port is used to
select the cell destined to itself. The basic switch module has a size of 8 X 8. The capacity
of the switch is 2.5 Gbit/sec. Multicast function and priority control are supported. When
the input loading is less than 0.9, the PLR is less than 10-. Traffic monitoring device at the
output port is also provided. A large switching architecture is constructed using the Clos
topology. The technology uses is CMOS.

2.3.3.6 BellCore Sunshine Switch

The Sunshine switch uses the combination of the sorting network and the banyan
network to achieve the intemal nonblocking condition [2-26]. To reduce output contention,
multiple (k) banyan networks are stacked in parallel to provide multiple paths. An output
queue can receive up to k packets at a time. If the number of packets destined to an output
port is larger than k, the overflow packets will be recycled back to an shared queue for
future reentry. The switch combines the output queueing scheme and the shared
recirculating queueing scheme. The switch supports priority. The technology used is
CMOS.

The main components of the Sunshine switch are the Batcher-Banyan chip set which
contains a 32 x 32 banyan chip and a 32 x 32 batcher chip. The Batcher and banyan chips
run at bit rates of 170 Mbit/sec.
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Based on the above chip set, BellCore has built another 32 x 32 fast packet switch
prototype that adopts input buffering scheme. The input ring reservation scheme is used
to resolve the output contention. BellCore has also used the 32 x 32 chip set as a basic
module to build a 256 x 256 sorted-banyan-based switch with a total capacity of 35
Gbit/sec. : .

2.3.3.7 NTT 8 x 8 Cross-Connect

The switch architecture adopts input queueing [2-27]. The switching fabric uses the
Batcher-banyan point-to-point nonblocking switching architecture.

The output contention resolution scheme uses a combination of time scheduling,
pipeline processing, and input ring reservation scheme with a large checking depth. The
main advantages of this approach are that the operation of the reservation speed is
independent of the switch size since the output reservation is performed in a pipeline
fashion.

The packets (at the input queues) which have successfully reserved the output ports in
advance will be transferred to another queue, called sending queue. In the sending
queue, each buffer space corresponds to one future slot.

2.3.3.8 Siemens ATM Switch

The switching element size is 16 x 8. A shared buffer architecture is used for each
switching element [2-28]. All the packets are read into the memory first. The packets are
read out from the memory to different output ports for transmission. To reduce the memory
access time, a wide paralle! bus is used for memory interface. The technology used is
CMOS. A 32 x 32 ATM switching module is constructed using 12 switching elements.
Priority control is provided. Each input port uses the leaky bucket scheme to monitor and
policy the incoming traffic.

2.3.3.9 AT&T Bell Laboratories Switches

AT&T Bell Laboratories has researched several fast packet switches. The first one is
the Starlite packet switch, which consists of a Batcher's sorting network, a Trap network
and a banyan network. The banyan network is an unbuffered switch, and because of the
sorting network, there is no internal blocking. The output contention problem is resolved by
the Trap network, which circulates the duplicate address packets to the reentry input ports.
The second fast packet switch is a buffered banyan network. There are two buffers for
each input within one switching element and the buffer size is one packet. The internal
blocking and output contention problems are tackled using the internal buffering approach.
The switch speed is higher than the link speed to further reduce the blocking problems
within the switch.
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2.3.3.10 IBM Switch
IBM has developed a fast packet switch prototype. The switch supports a 45 Mbit/sec

line speed and optical interface. Routing is based on the source routing method, where
the packet carries end-to-end path information. The switching architecture is not available.

2.3.3.11 Fujitsu HEMT Switch

A high electron mobility transistor (HEMT) ATM switch LS| has been developed by
Fuijitsu and its Laboratory. A prototype unit is constructed using the LS| module.

2.3.4 Future Plans

2.3.4.1 BBN Emerald Switch

The switch uses the off-the-shell components. The switch size is 10 x 10. The link
speed is 160 Mbit/sec. The switch uses busless design and distributed processing. It is
expected the design will be very similar to that of the Butterfly supercomputer, where the
architecture adopts the buffered banyan approach. The switch will be available in Aug.
1993.

2.3.4.2 TRW Switch

TRW announced that two ATM switches will be built. The first model, 2001, has
capacity of 720 Mbit/sec. The other model, 2010, has a capacity of 2.88 Gbit/sec. The
switching fabric is nonblocking. Two sizes are supported. The first one has a size of 64 x
64 and the link speed is 45 Mbit/sec. The second one has a size of 16 x 16 and the link
speed is 155.52 Mbit/sec.

A prototype is under development. The products are coming out at the third quarter of
1993. The price of the whole switch is at the range of 1 million dollars.

2.3.4.3 University Optical Switch

Columbia university builds an experimental optical switch. The switching architecture
uses wave-length division multiplexing. The capacity of the switch is 1 Gbit/sec.

2.3.4.4 GTE Government System Switch

The switch provides services for LAN and WAN. The switch called secured prioritized
ATM node (SAPNode) has link speed of 155 Mbit/sec. The switch size is 64 x 64.
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2.3.4.5 Cabletron System Switch

The ATM will be in production at the third quarter of 1993. The switch is provided as
backbone router to send packets among different types of LANSs.

2.3.4.6 Synoptics Communications Switch

A local ATM switch will be in the market next year to support high-speed desktop
applications.

2.3.4.7 NEC Switch

NEC pians to provide an ATM switch to compete with AT&T and Fujitsu Network
Systems. The switching system will provide interfaces for cells, frame relay, and
synchronous optical network (SONET).

2.3.4.8 DSC Switch

A fast packet switch will be available for field trial at the end of this year.

2.4 The Proposed Switching Architecture

The proposed multicast switching architecture is the multicast crossbar switch (see
Figure 2-11). The multicast crossbar switch is selected for the following reasons [2-29]:

* it is commercially available

* it is the switching architecture chosen by most terrestrial switch manufactures
* the switching delay is low

» the structure is simple

» the switching fabric is point-to-multipoint nonblocking

* the operation characteristics (such as power) are very suitable for on-board
applications.

The input queueing strategy is selected for easy implementation and low complexity.

The above selection matches with the recommendation made in Phase 1 report. In
Phase 1 report, three multicast switches were evaluated based on power consumption,
application specific integrated circuit (ASIC) count and fault tolerance. These three
multicast switches are the self-routing multicast crossbar, the sorted-multicast-banyan
switch, and the switch with muiticast modules at the output port. The self-routing multicast
crossbar was chosen as the optimal architecture because it has the lowest power
consumption per port and the lowest ASIC count for the switching fabric.
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Due to HOL blocking of input-queued switches, the switch throughput (for point-to-point
connections) can not exceed 58% for a larger N. To increase the switch throughput, two
approaches are possible. The first approach is to design a very efficient scheduling
algorithm for packet transfer, such as using the centralized ring reservation scheme with a
large checking depth. The other approach is to increase the switch speed. More
discussion and recommendation on the output contention control scheme for a multicast

crossbar switch is provided in Section 3.1.
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Figure 2-11: Proposed Multicast Switching Architecture: Crossbar Switch
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Section 3

Design Considerations for
Switching Subsystem

This section addresses design considerations for the switching subsystem based on
the selected architecture (i.e., the crossbar). They include output contention resolution,
satellite virtual packet format, priority control, integrated operation of circuit and packet
switched traffic, and fault-tolerant design. Based on these analyses, high-level functional
requirements for the on-board baseband switching subsystems are presented in Section 4.

3.1 Output Contention Resolution

There are two major system design issues associated with an FPS. The first issue,
which is the subject of this subsection, is the output contention. The second issue, which is
the subject of the task "Critical Element Design and Simulation", is the congestion problem.
Since there are no preassigned routing paths for ATM cells in a fast packet switch (as in a
circuit switch), several packets from different input ports may be destined to the same
output port at the same time. This situation is referred as output contention (see Figure 3-
1). If this occurs, output contention resolution has to be performed such that only one
packet is allowed to be transmitted to the output port. The other packets have to be
buffered or dropped depending on the switching architecture. The output contention can
be resolved using a special switch structure or using a mechanism to avoid output
contention. Various output contention resolution mechanisms for different fast packet
switching architectures have been addressed in Reference 3-1. The discussion in this
section contains a summary of Reference 3-1 for the selected switching architecture and
some new output contention resolution mechanisms proposed recently.

Based on the contention level encountered in the packet switch, the switch
architectures are categorized into two classes: contention-free switch and contention-
based switch. A contention-free fast packet switch is a switch whose output port can
receive up to N packets in one link slot time, where N is the size of the switch and a link slot
is defined as packet size/link speed. Within the contention-based switch class, the switch
architectures are classified according to the output contention resolution mechanism (or
packet transfer scheduling algorithm). There are three approaches: the first one employs
an output reservation scheme at the input ports, the second one uses a path setup strategy
to resolve blocking within the switching fabric and output contention at the same time, and
the third one uses an address filter at the output port. For the selected crossbar switching
architecture, only the first approach is applicable. The other two approaches will not be
discussed in this report.
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3.1.1 Contention-Free Switches

The prerequisite of a contention-free (multicast) switch is that the switching fabric must
be point-to-multipoint nonblocking. A contention-free switch is constructed by running the
switch speed N times faster than the link speed or stacking N switching fabric in parallel.
Clearly the hardware cost may be too high to have any practical applications when the
switch size or the switch capacity is large. The contention-free switch is mainly used for a
switch with a small capacity requirement.

On-Board
Fast Packet Switch
[Trput Port 0 ] 1 Output Port 0|
[Tnput Port 1 | [ Output Port 1]

[ Input Port 2 |

t— Output Port 2|

[input Port 3 |— | Output Port 3|

[Tnput Port 4 |— Output Port 4

—{ Output Port 5|

[TAput Port 6 — —| Output Port 6]

input Port 7 ]—- ! Output Port 7

Figure 3-1: An Ilustration of Output Contention in A Fast Packet Switch
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3.1.2 Output Reservation Scheme for Contention-Based
Switches

Allowing some output contention to occur in the switch can reduce the hardware cost
and speed requirement compared with the contention-free switch. To resoive the output
contention of a crossbar switch with input buffering, packet transfer at the input ports has to
be scheduled. In each packet transfer process, a non-contending set of connections (ora
permutation set of connections) is chosen from the packets at the input ports. The
choosing criteria may be based on priority, time stamp, a specific order, queue length, or
random. The packets presented to the switching fabric all have distinct destination
addresses and the packets will not be collided in the switching fabric and the output ports.

Due to head of line (HOL) blocking at the input port queue, the packet switch
throughput for point-to-point connections cannot exceed 58% for a large N [2-12]. The
throughput is defined as the average number of packets arrived to the output ports in one
link slot divided by the switch size, where a link slot is defined as (packet size/link speed).
This blocking is a side effect of the results of output contention. Assume that one packet at
the head of input queue cannot be transmitted due to output contention. Then this blocked
packet hinders the delivery of the next packet in the queue due to the first come first serve
(FCFS) nature of the queue, even though the next packet can be transmitted to the
destination without any blocking. To improve the throughput of the switch, there are three
basic methods. The first method is to increase the switch speed so that more than one
packets in the input port can be processed within one fink slot time. The ratio of the switch
speed to the link speed is defined as the speedup factor (S). In one link slot time, S
packets at an input port are processed by the output port reservation module. An input port
is allowed to transmit from one to S packets in one link slot time. The second method is to
use p parallel switches, p transmitters at the input port, and p receivers at the output port.
The result is there are p disjoint paths between each input and output pair, the input can
transmit up to p packets, and the output port can receive up to p packets at the same time.
The third method is to design a more efficient scheduling algorithm to increase the
throughput of the switch. In the first two methods, since more than one packets can arrive
at one output port in one link slot time, the switch has to incorporate output queueing to
hold the packets. In this case, each output port performs as a statistical multiplexer. Since
output queueing is used, the throughput definition is modified as the average number of
packets leaving the output ports in one link slot divided by the switch size. The third
method does not need any output buffering.

The output reservation scheme can be performed centrally or in a distributed fashion.
In the centralized scheme, output reservation for different input ports is executed by one
common module (the output reservation module). In the distributed scheme, output
reservation for different input ports is executed by different modules. The decision made
by one module is independent of the others. The ring reservation scheme is chosen as the
representative for discussing the centralized scheme due to its simplicity, easy
. implementation, and versatile applications [3-2]. The two-phase output reservation
scheme is used to discussed the distributed scheme [3-3]. A new scheme, which
combines the advantages of the ring reservation scheme and the two-phase reservation
scheme is also introduced in this subsection.
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The following nine subjects are addressed in this subsection:
« centralized ring reservation scheme for point-to-point switches
« centralized ring reservation scheme for point-to-multipoint switches
« centralized ring reservation scheme for link grouping
« centralized ring reservation scheme for parallel switches
« centralized ring reservation scheme with pipeline implementation
« application of centralized ring reservation scheme to crossbar switch
« decentralized reservation scheme
* a new reservation scheme
» proposed reservation schemes for a crossbar switch

The priority control in conjunction with the centralized ring reservation scheme is
discussed in Section 3.3.

3.1.2.1 Centralized Ring Reservation Scheme for Point-to-Point
Switch

Basically, the ring reservation scheme uses the token ring principle to resolve output
contention [3-2]. The input ring connects all the input ports of the switch and the function of
the ring is to perform output reservation for each input port. At the beginning of every slot
time, the output reservation module sends a stream of tokens and passes these tokens
through all the input ports, where one token represents one output port (see Figure 3-2). It
is assumed that the tokens are passed serially from one input port to another input port.
The input port searches the right token according to the destination routing tag of the
current head of line (HOL) packet. If the token for the corresponding routing tag is on the
stream, then the token is removed so that no other input ports can transmit a packet to the
same output port at the same slot time. After the token stream has circulated through all
the input ports, the input ports (that have reserved a token) can transmit the packet at the
beginning of the next slot time. In implementation, only one bit is necessary for one token.
For example, value 1 represents there is a token and value 0 no token. In the example
shown in Figure 3-2, the token streams start from input port 0. The HOL packet buffered at
Input port 0 is destined to output port 1. Consequently, input port O takes token 1, i.e.,
changes the bit at position one of the output map from 1 to 0. The HOL packet buffered at
input port 1 is also destined to output port 1. Since token 1 has been taken (by input port
0), the HOL packet at input port 1 is blocked. To assure faimess among the input ports of
accessing the tokens, several ways can be employed. The first is at different slot time, the
stream will be started at different input port. The second is to send this stream from the
beginning of the input ports and from the end the input ports alternatively.
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the preset window size or the “checking depth”. If one of the packets within the checking
depth has a chance to be transmitted, this packet will be transmitted first. in this sense, a
FIFO input queue has a checking depth 1 while a non-FIFO input queue has a checking
depth greater than 1. Theoretically, if the checking depth is infinite, the throughput of the
switch can reach 1. From the simulation results [2-11] [3-1], the improvement of the switch
throughput decreases when the checking depth gets larger. Please refer to Table 2-2 for
switch throughput for different checking depths. Hence, in practical, the checking depth is
less than O (10). To further improve the throughput, either increasing the switch speed or
using parallel switches is necessary.

3.1.2.2 Centralized Input Ring Reservation Scheme for Multicast
Switch

The input ring reservation scheme used in the point-to-point switch can be directly
applied to the point-to-multipoint switching fabric. The difference is that in a multicast
switch the input port can reserve more than one output ports at a time, i.e., the input port
can take more than one tokens at a time. If call splitting is allowed, the transfer of the
multicast packet to different destinations can be partially completed. The call splitting
concept is introduced in Section 2.1. If call splitting is not allowed (one-shot operation), the
transfer of the multicast packet to different destinations has to be completed at the same
slot time.

3.1.2.3 Centralized Input Ring Reservation Scheme for Link Grouping

The switch size does not have to be consistent with the number of uplinks or number of
downlinks. If the number of uplinks is small and the link speed is very high (e.g. 600
Mbit/s), then it is not easy to implement such a high-speed switch using low-power devices
on-board. One way of resolving this issue is to apply link grouping, i.e., the high-speed
input links can be demultiplexed first into several lower-speed intermediate links, and
these links are fed into different input ports of a switch (see Figure 3-3). Assume the total
number of high-speed uplinks is g and the switch speed is S. If we use 1:m demultiplexer
to reduce the link speed, then the size of switch is enlarged to g*m. The speed of the
switch is decreased from S to S/m. Each packet header carries the destination address
(the physical address). The physical address is to specify the downlink beam. This
physical address must be translated into logical address. The logical address is used to
set up a path within the switch.

Another advantage of performing link grouping is that the output contention problem of
the switch can be reduced. Suppose m = 3 and consider downlink 1. Whether a packet is
routed to output port 0, output port 1, or output port 2, it will be multiplexed to the downlink
1. Hence, by performing address transiation at the input port and a careful design of the
output port contention resolution scheme, the output link efficiency can be largely
increased by reducing output port contention. The input ring reservation scheme can be
directly applied in this case. There are I"m tokens in the token stream, where every m
tokens is grouped into a super token for each downlink. All the packets destined to the
same downlink can remove any token (any output port) in the super token (the downlink).
The token removed by the input port will be the routing tag for the packet at the next time
slot. '
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Figure 3-3: An Illustration of Link Grouping Concept

3.1.2.4 Centralized Input Ring Reservation Scheme for Parallel
Switches

The input ring reservation scheme can be applied parallel switches with a simple
modification. Assume there are p parallel switching fabrics, p paralle! transmitters at the
input port, and p parallel receivers at the output port. Since the output port has the
capability of receiving p packets at the same time, the token format has to be modified.
There are N*p tokens in the token stream, where p tokens are grouped into a super token
for each output port. All the packets destined to the same output port can remove any
token in the super token. The only restriction is that the packets at different transmitters at
the same input port need to have different destinations so that out-of-sequence will not
occur. With this configuration, the first TX can process the token first, and followed by the
second TX, and so on. Since there are p receivers at the output port, output buffering is
necessary to handle the situation that more than one packets come to the output port at the
same time. The output port first multiplex the packets in the p receivers into one high-
speed TDM bus and feed this TDM stream into a common buffer.

3.1.2.5 Centralized Input Ring Reservation Scheme with Pipeline
Implementation

The time reservation algorithm, proposed in [3-3], uses future time scheduling, pipeline
processing, and a large checking depth. The main advantages are that the reservation
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speed is independent of the switch size and a large checking depth is used to improve the
throughput.

Basically, this algorithm implements the tokens in parallel. The output port reservation
module sends out streams of tokens in parallel. If the switch size is N, the number of
parallel streams passing around the input ports is also N, where one parallel stream is for
one time slot. Each input port processes one parallel stream at one slot. An example is
given below to illustrate the operation.

First the output port reservation module generates a paraliel stream for time slot t and
sends the stream to the input port 0. All the packets within a checking depth d at input port
0 have a chance to reserve the outputs for time slot t. After this, the output port reservation
module generates another parallel stream for time slot t+1 and sends the stream to the
input port 0. All the packets within a checking depth d all have a chance to reserve the
outputs for time slot t+1. At the same time, the parallel stream for time slot t is shifted from
input port O to input port 1. All the packets within a checking depth d all have a chance to
reserve the outputs for time slott. The shift cycle is one slot time. The total number of shifts
required for one parallel stream to shift from the reservation module to output port N-1 is N.
Note in this configuration, input port N-1 has the least probability of obtaining a token since
it is the last stop of the parallel token streams. For fair access to the tokens, the parallel
stream has to alternate the starting input port every M slots, where M = N.

There are two ways of checking a large depth: serial search or parallel search. The
advantage of paraliel search is that the search time is independent of the checking depth.

Since output port reservation is performed in pipeline, packets will be scheduled into
the future. The packets which have successfully reserved the output ports in advance will
be transferred to another queue, called send queue. In the send queue, each buffer space
corresponds to one future slot. When the future slot comes, the packet corresponding to
the future siot in the send queue is sent out. The conventional scheme can be considered
to have a send queue of size 1. And the future slot for the send queue is always the next
slot.

There is a fixed queueing delay associated with this scheme because of pipeline
operation regardiess of traffic loading. An example is illustrated in Figure 3-4. Assume
current slot is t. At the beginning of operation, the token streams assigned to (1+1) slot must
be at input port N-1; otherwise, there is no pipeline operation. Consequently, the token
streams assigned to (t+N) slot is at input port 0. The packets at input port O suffer a fixed
queueing delay of N slots and the packets at input port N-1 suffers a fixed queueing delay

of 1 slot. On average, a packet (at any input port) suffers a fixed delay of —g— slots. In the
conventional scheme, the fixed queueing delay is always one slot time.
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Since the reservation is performed in a pipeline fashion, the reservation speed is
independent of the switch size. The searching time into the input port to find a packet to
match the arrival tokens is independent of the checking depth if search is also performed in
parallel. A large check depth is feasible in this approach.

3.1.2.6 Applicability of the Centralized Input Ring Reservation Scheme
to Crossbar Switches

As discussed in Section 2, high-speed crossbar switches are commercially available.
Strictly speaking, these crossbar switches are not self-routing switches since crosspoint
configuration for each output port has to be performed sequentially not in parallel.
Nevertheless, the self-routing tag of each packet can be stripped off and used to select
(enable) the output control register, and at the same time the input address is loaded into
the register. After this, the input ports whose packet has reserved an output port can start
transmission at the beginning of the next slot time. This process, shown in Figure 3-5, has
to be executed for each input port sequentially. As long as the switching states of the
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switch can be reconfigured in one packet time, the packet transmission through the switch
is not disrupted.

The sequential loading of the input port address into the register makes the centralized
ring reservation scheme even more attractive. Remember that the tokens represent the
destinations which are granted for transmission at the next siot time. The tokens in
conjunction with the input addresses can be used for switching state configuration. There
are N bits for N destinations in the token stream. There are N load registers with Logz N bit
wide in the crossbar switch, one for each output. Two approaches are identified to

reconfigure the states of the switch.

Output Reservation

Module
Input O — Output 0
= ™ NxN -
. . Crosspoint Switch .
= Matrix .
Input N-1 —p — Output N-1
o & Configuration Register 0 N Registers
8 c
gl |2 A K
g = * N Registers
@ Load Register O|* 9
input Address
(Log N bits) Enable
Token to
—L—p Qutput Address}
oken Converter

Figure 3-5: High-Level Design of Applying Input Ring Reservation Scheme to
Crossbar Switch

The first scheme is to let the input port load its own address into the load register
following a specific sequence. The specific sequence is based on the destination address
of the packet waiting for transmission at the input port. Each bit in the token stream is used
to enable the corresponding load register. For example, the first bit in the token stream is
used to enable load register 0, the second bit in the token stream is used to enable load
register 1, and so on. Each input port scans the output port address of the packet (which
has reserved an output port) waiting for transmission. If the output port address is O, the
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input address (Logz N bits) of the input port is loaded into the register after loading register
0 is enabled. After this, load register 1 is enabled. The input port, whose packet waiting for
transmission is destined to output 1, loads its own address to register 1; and so on.

The second scheme is to append the input port address after the token stream once an
output port is successfully reserved by the input port (shown in Figure 3-6). For example,
assume the packet at input port 2 reserves output port 0. Then address 2 will be inserted
in lp position. If the input port fails to reserve an output port, the input port address is not
appended. The input port addresses will be loaded into a centralized controlier. The
centralized controller configure the states of the switch sequentially using the input port
addresses. After the switching state has been configured, the input ports, whose packet
has reserved an output port, can start transmission.

Input Port Address Subfield Output Port Availability Subfield

N-1 IN.z " I1 Io AN-1 AN-2 v A1 Ao

Ai : Output port i availability

| - Address of input port that successfully reserves output port i.
i

Figure 3-6: Token Format with Input Port Subfield

3.1.2.7 Decentralized Reservation Scheme

The distributed reservation scheme has an output reservation module for each output
port [3-3][3-5]; however, these reservation modules do not have to be in separate physical
entities. The scheme is explained in detail below.

As illustrated in Figure 3-7, there are N reservation modules for N output ports. In the
output port reservation process, each input port has two phases: request and arbitration. In
the request phase, each input port sends a request to reservation module i, where i is the
destination address of the HOL packet in the queue. Each reservation module may
receive up to N requests from N different input ports at one time. After the module receives
the requests, the reservation enters the arbitration phase. There are two different designs
depending on whether future scheduling is allowed.
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Figure 3-7: The Configuration of Decentralized Reservation Scheme

Case 1: No future scheduling is allowed. In this case, each module schedules the
requests for the next transmission slot. |f the module only receives one request, an ACK is
sent back to the input port. The input port which receives an ACK can send out the HOL
packet at the next slot. If the module receives more than one request, the module selects
one of the requests randomly. The input port whose request is selected is notified by an
ACK. The input port whose request is not selected will not be notified. Due to HOL
blocking, the saturation throughput is less than 58% for a large N.

Case 2: Future scheduling is allowed. Each reservation module keeps a variable, the
next available transmission slot, in memory. When the module receives multiple requests,
every request is assigned a future, nonconflicting time slot. The future transmission slot
assignment is sent back to each input port. Since each output reservation module makes
its own transmission time assignment, conflict of assignments from different modules may
occur at an input port. Assignment conflict occurs when two or more packets in the queue
are assigned the same transmission slot. The input port must arbitrate the assignments.
An example is given below to illustrate the assignment conflict. Assume each of the three
input ports (1, 3 and 4) sends a request to module 0. The next available transmission slot
for module O is tg. Modute 0 assigns to to input port 1, to + 1 to input port 3, andtp+ 210
input port 4. The next available transmission slot for output port 0 becomes tg + 3. The
update of the variable for the next transmission sliot can use a counter.

At the next slot time, assume each of the two input ports (0 and 3) sends a request to
module 1. The next available transmission slot for module 1 is to. Module 1 assigns tp to
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input port 0 and tp + 1 to input port 3. The next available transmission slot for output port 1
becomes tg + 2.

When an input port receives an assignment from a module, it assigns the transmission
slot to the corresponding packet in the queue. Input port 3 receives two assignments (for
two packets) with the same transmission time (tg + 1). This represents an assignment
conflict. If this occurs, the input port discards all but one of the conflicting assignments.
The packets whose assignments are discarded enters the request phase again. In this
case, input port 3 discards the one of the two assignments, say the assignment from
module 1. Input port 3 sends another request to module 1 again. The transmission slot for
each packet in the input queue is stored in a control memory. The control memory reads
out the packet when the system time matches with the transmission slot time. Since the
slots can be scheduled into the future, the saturation throughput can reach 62% [3-5].

In the above scheme, when a transmission slot is conflicted with the previous slots at
an input port, the conflicted transmission slot is discarded. The wasted transmission siots
degrade the switch throughput. To overcome this inefficiency, the conflicting slots are
recycled back to the reservation modules. These recycled siots are stored in memory.
Using the above example to illustrate the recycle concept. Input port 3 sends tg + 1 slot
back to the module 1. There is a limit for the maximum number of recycled slots which can
be stored in the module. Using the recycle mechanism, a slot can be reassigned for
infinite times until the slot is expired. If a slot can not be assigned to any input port,
eventually the slot will be expired. If a slot is expired, the slot is erased from the memory.
By recycling the conflicted slot back to the module, the switch throughput is increased from
62% to 92%. This throughput is achieved by allowing only one recycled slot to be stored in
the module. It was shown in Reference 3-5 that no significant improvement can be
achieved by allowing more recycled slot to be stored in the module compared with one
recycled slot. Since only one recycled slot is allowed to be stored in memory, when a new
recycled slot comes, the old recycled slot is overwritten.

Since the recycled siots are always earlier than the next transmission slot, the module
should always assign the recycled slot to the request if there is any recycled slot. If there is
no recycled slot, the next transmission slot is assigned. To eliminate the situation that the
recycled slot is always assigned to the same input port, a simpie rule is enforced. The
recycled slot can not be used until an assignment (using the next transmission slot) is
made. Therefore, an input port can not receive the same assignment for two successive
slots. However, this rule introduces out-of-sequence problem. An example is given below.
Assume input port O send a request to module 1. The next transmission slot for module 1
is t1 and the module has a recycled slot tg (to < t1). Module 1 can not use to until t1 is
assigned. in this case, input port O receives the transmission time t1. If input port O sends
another request to module 1, the input port O receives another transmission time t0. Since
to < t1, the packets will be transmitted out of sequence. A better approach is to use the
recycled slot first and dynamically update the assignment sequence for the arrival requests
in a module. For example, the sequence for a module to assign the time slot for each
request is based on the input port address. The first sequenceis 0, 1, 2, .., N-1. The
following sequences rotate one element at a time. Evidently, this approach does not work
if there is only one request at the module. By using this approach, the probability that an
input port receives the same assignment multiple times is reduced.
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For the multicast operation, the input port sends out multiple requests to different
modules. Call splitting capability for multicast operation is a necessity in this architecture.
The link grouping concept can be directly applied to this scheme. One reservation module
represents m output ports. The reservation module can assign any output port to the
arrival requests. The decentralized scheme can be applied to a crossbar switch. Each
input port uses the routing tag of the packet to enable the load register. At the same time,
the input port sends out the input address to be loaded into the load register.

The advantage of this scheme is that no switch speed up is required to achieve a high
- throughput; consequently, no output queueing is required. In addition, a distributed
scheme can be made more robust than a centralized scheme.

3.1.2.8 Centralized Ring Reservation Scheme with Future Scheduling

The future scheduling concept introduced in Reference 3-5 inspires a new output port
reservation scheme. This scheme combines the basic centralized ring reservation scheme
and the future scheduling concept. The output reservation module sends out token
streams in serial. However, the number of token streams is more than one, say m.

Assume the current slot time is t-1. Then the reservation module sends out m token
streams for time t, t+1,..., and t+m-1. The input port searches the tokens for the HOL
packets. The input port searches the token for time t first. If no token can be found, the
input port searches the token for time t+1; and so on. An example is given in Figure 3-8 to
illustrate the operation.

For easy discussion, assume the switch size is 4 x 4. At time t-1, four streams of tokens
pass to the input ports. Since the HOL packets at input port 0 and input port 1 are both
destined to output port 1, the HOL packet at input port O reserves token 1 for time t and the
HOL packet at input port 1 reserves token 1 for time t+1. At time t, the HOL packets that
have been assigned transmission time t are sent out. In the mean time, four streams of
tokens pass to the input ports. Notice that the token streams for time t expire and the token
stream for time t+4 is joined. Since the HOL packet at input port 1 has been assigned a
transmission time, input port 1 reserves a token for the packet behind the HOL packet. This
is referred as queue bypass scheme. With future scheduling and queue bypass scheme,
the switch throughput is largely increased. (if m is equal to N, the throughout can be at
least the same as in Reference 3-5.) Note that the tokens can be reused multiple times
until the tokens expire. The same procedure repeats at time t+1.

The new scheme combines the advantages of centralized reservation scheme and

future scheduling, i.e., easy implementation and high throughput. Also, unlike the scheme
proposed in Reference 3-5, this new scheme will not transmit packets out-of-sequence.

3-14 « COMSAT Laboratories



t+2
I Token o| Token 1 I Token 2| Token 3| - -
output O output 1 output 2 output 3 hat -

Input Queue O

Input Queue 3

1f ' 3]

a) Time t-1

t+1 t+2 t+3 t+4

v—-§ -~
- -—
Sy - -~
-— -— -~

Input Queue O

Input Queue 1

t+2
Input Queue 2

Input Queue 3

b) Time t

COMSAT Laboratories « 3-15



~
+

®
g
0

LY T YE

LY

t+2

Lo
Lty

Input Queue O

Input Queue 1

t+4
Input Queue 2

t+2 t+3

Input Queue 3

c) Time t+1

Figure 3-8: An Illustration of the New Output Reservation Scheme

3.1.2.9 The Proposed Output Port Reservation Scheme

Centralized scheme without pipeline operation must complete sending the token
streams (multiple times considering priority and a large checking depth) to all N input port
in one slot time. The reservation speed gets higher when size N gets larger. Centralized
scheme with pipeline operation sends token streams in a parallel, pipeline fashion to
different input ports. The reservation speed is independent of the switch size. However,
the pipeline mode introduces more hardware complexity. Since the on-board switch size
is not large, the advantage of using the centralized scheme with pipeline operation is not
significant. The first proposed scheme is to use the basic centralized ring reservation
scheme. Transfer of a multicast packet at the input port has the call splitting capability.
Using the centralized ring reservation scheme, a larger checking depth is required to
achieve a high throughput.

The second proposed scheme is to use the centralized ring reservation scheme with
future scheduling. The number of token streams, which can be sent in parallel, is limited
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by hardware complexity. This scheme can increase the switch throughput without
increasing the switch speed; consequently, no output queueing is required.

Distributed scheme can largely increase the switch throughput without increasing the
switch-speed. -In addition, the distributed scheme may be made more reliable than a
.centralized scheme. However, due to the limited budget, the performance of the
distributed scheme can not be analyzed at this point of time. Based on the above
discussion, two output reservation schemes are proposed:

» Centralized input ring reservation scheme with a large checking depth
and without future scheduling

* Centralized input ring reservation scheme with a large checking depth
and with future scheduling

The final selection will be determined at the "High Level Design" task.
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3.2 Satellite Virtual Packets

Satellite virtual packet (SVP) concept has been proposed for unified routing, control
and management within the satellite B-ISDN [2-1]. Unicast SVPs are created by
prepending a header to one point-to-point ATM cell or a group of point-to-point ATM cells
destined to the same downlink beam (or the same receiving earth station). For point-to-
multipoint ATM celis, a cell or a group of cells destined to the same set of downlink beams
are grouped into a multicast SVP. Formatting cells into SVPs at the earth station can avoid
on-board VPI/VCI processing and HEC processing, simplify the space segment complexity
without introducing much hardware at the earth station, and bit interleaving of cell headers
can be naturally achieved [2-1]. Although, originally, SVPs are proposed to accommodate
only the ATM cells, the SVP payload can be extended to support other other high-
speed/wideband traffic such synchronous digital hierarchy (SDH) and synchronous optical
network (SONET). (SVP can also support low-rate traffic such as frame relay and
consultative committee for space data systems [CCSDS])). SVPs are served as a multi-
media container within the satellite network. Since cells are already in packet format, to
place the cells in the SVP payload, no segmentation is required. For SDH and SONET, a
segmentation protocol is necessary to segment the signal into blocks. After segmentation,
a sequence number (SN) and a virtual channel number (VCN) are required in the SVP
header. The SN is for reassembly purpose and the VCN is to identify the connection.
Although SN and VCN are not necessary for the SVPs with cells as payload, to have a
unified header structure, VCN and SN are suggested to be placed in every SVP header.
Note that the payload of one SVP does not support mixed protocols. For example, the
SVP payload either consists of ATM cells or SDH circuit slots, but not both.

Three important topics are discussed in this subsection. The first one deals with
whether VPI/VCI processing for ATM traffic is necessary for the FPS. The second
addresses the SDH packetization procedure at the earth station. The third addresses the
alternatives of SVP formats and the required modifications for the FPS to accommodate
the SVPs.

3.2.1 VPI/VCI Processing for ATM Traffic

For ATM cells, 24 bits VP! and VC! at the user network interface (UNI) and 28 bits at the
network node interface (NNI) are available for routing information. VPI can have either a
local or a global significance within the satellite network based whether the VPl is unique
in the satellite network. 1f VPIs are unique within the satellite network, VPI has a global
significance. If VPIs can be reused at different nodes (terminals and on-board switch),
VPIs only have a local significance. The advantages and disadvantages of VP! with a local
significance and a global significance are discussed below.

a. Topology flexibility: VPI with a local significance provides more flexibility in
adapting the network topology for network expansion (such as node addition
and link addition) and node failure. In contrast, VP! with a global significance
has less flexibility. For example, once a node fails, it may be hard to reuse the
VP! space reserved for the node.
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b. Node processing and delay: Since VPIs with a global significance have a
unique VP! for each NNI, the transit node only performs routing while VPI
retransiation is not necessary. The result is that node processing cost is small
and the call setup delay is minimal.

c. Addressing space: The addressing space for VPIs with a global significance is
shared by the NNIs within the satellite network. This may not be feasible for a
large network since the number of NNis is large.

From the above discussion, the VP! with a local significance is more advantageous
than the VPI with a global significance in terms of flexibility and the addressing space.
However, the VPI with a local significance requires the VP! to be translated at every VP
terminator (such as a switch). Since the space segment contains an FPS, VP! retranslation
on-board will result in a larger delay, higher processing cost, and more memory
requirements. By using SVPs, VPI with a local significance can be adopted and no VP
retranslation on-board is necessary. The reason is that cells becomes the payload of
SVPs, and SVPs can be routed through the FPS using the routing tag and the connection
can be identified using the VCN.

In summary, the VP! with a local significance is used within the satellite network. The
VP! needs to be retranslated at the earth stations. However, no VPI translation is required
at the on-board FPS.

3.2.2 SDH Packetization

SDH and SONET will be used to support B-ISDN traffic in Europe and Northem
America, respectively. SDH (or SONET) supports both ATM connections and circuit
switched connections. The SDH signal is converted into SVP format at the earth station.

The SDH signal can be divided into SDH information payload and overheads. If the
SDH payload contains cells, then the location of the first byte of the virtual container (VC-4)
path overhead is indicated by the AU pointer. The VC-4 consists of a container (C-4) and
the path overhead. The cells can be extracted from the C-4 container by processing the
H4 offset within the path overhead. After his, the cells will be grouped into SVPs.

if the SDH payload contains circuits, then the circuit slots are directly put into the SVP
payload and designate one field in the SVP header (payload type field) to identify that this
packet consists of circuit slots. These SVPs can be treated as circuit data, which exhibit
periodic and deterministic natures. Integration operation of circuit and packet switched
traffic using a FSP is addressed in Section 3.4. ..

The SDH contains standard overhead bits for operation, maintenance, communication,
and performance monitoring functions. These overheads consist of section overhead
(SDH), path overhead (POH), and AU-4 pointer. These overheads are placed directly into
the SVP payload. The destination information for these circuit slots is contained from a
separate signaling channel (such as SS7). This information can be used to format the
routing tag at the earth station.
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3.2.3 The SVP Format

The size of the SVP is the first issue which needs to be considered for the SVP format.
Since the size of the SVP header will be fixed, the more the cells (or bits) are put into the
SVP, the higher the transmission efficiency will be. A larger SVP also increases the packet
interarrival time, which lightens the speed requirement for the FPS. However, a larger
packet will have a longer packetization delay at the earth station and the payload efficiency
is low if not enough number of cells can be filled into the packet. A larger packet size will
result in larger buffer requirement, longer end-to-end delay, and worse delay jitter. A
larger packet will also increase the number of bits of the SVP payload in error. No optimal
size can be found for single-size SVPs. Since the buffer requirement is the main concern
for the space segment and the delay determines the quality of circuit emulation service, it is
envisioned that one SVP should only contains several cells.

Based on the performance analysis of SVP (supporting only ATM cells) transmission
through the earth station, to fully utilize the SVP concept without affecting the delay quality,
the uplink and downlink has to operate at a very high utilization (80%) and the single-size
SVP should be kept small (< 4 celis). The 80% link utilization defines the lower bound of
the FPS throughput.

We may wonder if a SVP cannot be filled up with cells, it simply means that there is not
enough traffic in the system. Therefore, padding of idle cells in a SVP is not considered to
be bandwidth inefficient. This statement is true only if there is one type of service and one
beam. The satellite bandwidth is shared by different terminals in different beams and by
different types of services. Assume the loading distribution for different downlink beams is
not uniform for the terminals in the same uplink beam. Then the incoming cells destined to
the heavily loaded downlink beam have high utilization and those destined to the lightly
loaded downlink beam have low utilization. If idle cells are constantly inserted into the
SVPs destined to the lightly ioaded downlink beam, some bandwidth is wasted.
Consequently, the amount of bandwidth, which can be utilized by the SVPs destined to the
heavily loaded downlink beam, is reduced. Also bandwidth saving on one type of service
can be used by another type of service. For example, the uplink beam supports packet
switched traffic and circuit switched traffic. Then bandwidth saving on packet switched
traffic can be used for circuit switched traffic. Therefore, increasing the SVP transmission
efficiency and SVP payload efficiency is vital to the bandwidth limited satellite
environment. If there is indeed not enough traffic in the system, idle SVPs will be sent from
the terminals to maintain the frame synchronization.

Since no optimal size can be found for SVPs, to efficiently support ATM cells, SDH,
and other traffic within the satellite network, SVPs may have to use multiple sizes. The
SVPs with multiple sizes concept is explained below. Assume that one single ATM cell
size is chosen as the basic SVP information payload size. Then the satellite network may
support single-cell SVPs, two-cell SVPs, four-cell SVPs, and so on. The overall
processing requirement to support SVPs with a limited set of sizes compared with that to
support the variable-size packets is reduced since the SVP size can be detemnined using
a size indication field (not the packet length field). The payload efficiency is increased for
SVPs with multiple sizes since the SVP has the flexibility of using different payload sizes to

3-20 « COMSAT Laboratories



accommodate traffic with different intensities. The transmission efficiency is high if a large
payload size is used and is low is a small payload size is used. Overall, the transmission
efficiency for the SVP with multiple sizes is about the same as that for single-size SVPs. In
summary, employing SVPs with multiple sizes combines the advantages of the fixed-size
packet and the variable-size packet.

A timer is associated with each SVP. If the timer expires, the SVP will be sent out with
the cells (or bits) currently in the SVP. If the current number of cells is not equal to one of
the SVP sizes, there are two options. These two options are explained using an example.
Assume a SVP has four sizes: one cell, two cells, four cells, and eight cells. Let the current
number of cells in the SVP is 3. Option 1 is to send out the SVP as a 2-cell SVP. The
remaining cell inserts into the next SVP. Option 2 is to send out the SVP as a 4-cell SVP.
Since there are only three cells in the SVP, the SVP is padded with an idle cell.

There are two options for the SVP header format depending on grouping of cells (or
bits) into a SVP is based on the downlink beam or the receiving earth station.

We first discuss the SVP header format when grouping of cells (or bits) into a SVP is
based on the downlink beam. This grouping method is more applicable for a very small
aperture terminal type (VSAT-type) satellite network with a few spot beams and a large
number of terminals in each beam. Broadcast connections can be achieved easily for the
receiving terminals within the same downlink beam since no packet duplication is
necessary. Itis proposed that the header consists of the following fields: the switch routing
tag, size indication field, quality of service (QOS) field, control field, payload type (PT) field,
virtual channel number (VCN), sequence number (SN), and forward error control (FEC)
field (see Figure 3-9).

8 bit 2 bit 1bit 1bit 2bit 6bit 4 bit 8bit

Routing Size
Tag | Indication QOS | Control| PT |VCN{| SN|FEC

Figure 3-9: Tentative SVP Header Option 1

The routing tag is to identify the downlink beam and is also used for routing through the
on-board switch. The size and format of the routing tag depends on the fast packet
switching architectures and connectivity. For phase 2 implementation, only multicast FPSs
are considered. One possible routing tag format uses a series of 1's and 0's. The position
of all the 1's means all the destined output ports. The size of the routing tag is the same as
the switch size. The routing tag is proposed to be prepended at the earth station. An
inherent advantage of this approach is that fault-reconfiguration of the FPS can be easily
achieved by simply changing the routing tag of the packet at the earth station. As a resuit,
the packet can be routed through a fault-free path within the switch. The size indication
field is to identify the size of the SVP (for example, single-cell SVP, 2-cell SVP, and so on).
The QOS field is for QOS control. All the cells within the SVP should have the same QOS.
For example, all the cells within the SVP will have the same cell loss priority (CLP). Based
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on the QOS field, the FPS can perform priority control to guarantee the QOS for certain
services, and also drop the low-priority cells if congestion occurs. The control field is to
identify the SVP is an information packet or a control packet. If the SVP is a control packet,
it will be routed to the OBC. Also the OBC will generate control SVPs (containing
congestion status), and these packets will be broadcasted to all the earth stations. The
payload type is used to identify whether the payload consists of cell, circuit siots, or other
types of traffic. The SN is for reassembly purpose and the VCN is to identify the
connection. The FEC field is used to correct and detect errors in the SVP header. The
FEC can also be used for synchronizing the SVPs as the cell delineation algorithm
performed in the ATM cell synchronization procedure. SVP synchronization procedure
using the FEC field will be presented latter. Due to the complexity of FEC coder/decoder,
the FEC may leave as an option for Phase 2 development.

The preliminary sizes chosen for the fields are the routing tag 1 byte, the size indication
field 2 bits, QOS field 1 bit, control field 1 bit, payload type field 2 bits, VCN field 6 bits, SN
field 4 bits, and FEC field 1 bytes. The size of the SVP header has 4 bytes.

Note since cell (or bit) grouping is performed based on the destined downlink beam,
the source station and destination station addresses are not necessary (when VCN has a
global significance). To extract the cells, the circuit slots, or other types of traffic in the
same SVP destined to the earth station, the following procedure must follow. First, the
earth stations within the same downlink beam use the payload type field to identify whether
the payload consists of cells, circuit slots, or other types of traffic. Then the earth stations
use the VCN to identify the connections for the type of traffic. The VCN has a global
significance within the satellite network. The sequence number is used to reassemble the
original packet format. The VCN for each type of service is set up at the signaling phase.

There are two alternatives for a single-size SVP containing only one cell. The first
alternative is to have a header in front of every single cell. The SVP payload consists of 53
bytes. The SVP format is shown in Figure 3-10A. Clearly, the size indication field is not -
required in the SVP header. This approach has the simplest implementation but it also
has the largest overhead. The second is to map the five-byte cell header into the SVP
header at the sending station. The SVP format is shown in Figure 3-10B. The SVP
payload consists of 48 bytes. The on-board switch routes the SVP based on the routing
tag in the SVP header. When the receiving station receives the SVP, the SVP header is
mapped back to the cell header. Although mapping functions are required at the earth
station, this approach has the smallest overhead (for ATM traffic).

Although the single-size SVPs containing one cell has the highest transmission
efficiency for ATM traffic, it is not efficient for SDH traffic. Depending on the traffic pattem,
multiple sizes of SVPs may be required. Before discussing the format of multiple sizes of
SVPs, the "basic SVP size" has to be determined. The basic SVP information payload is
chosen to be 53 bytes to conform with the ATM cell size. The “basic SVP" consists of the
basic information payload and the header, and its size is 57 bytes. There are two
alternatives for a large SVP. The first altemative is that a larger SVP size is multiple of the
basic SVP size. The second alternative is that the information payload size of a larger
SVP is multiple of the information payload size of the basic SVP. These two altematives
are shown in Figure 3-11.

3-22 « COMSAT Laboratories



8bit 1bit 1bit 2bit 8bit 4bit 8bit 5byte 48 byte

Routing Cell Cell
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8bit 1bit 1bit 2bit 8bit 4bit 8bit 48 byte
Routing Cell
Tag QOS|Control| PT JVCN| SN|FEC Payioad
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Figure 3-10: Two Alternatives for Single-Size SVPs Containing One Cell |

|—— Basic SVP ——]

Header 53 bytes

|— SVP Payload—]

Header 53 bytes 53 bytes

— SVP Payload —

Alternative 1 for a 2-Cell SVP

Header 53 bytes 53 bytes

— SVP Payload —]

Alternative 2 for a 2-Cell SVP
Figure 3-11: Two Alternatives for a 2-Cell SVP
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Since a large SVP size in the first altemative is exactly multiple of the basic SVP size,
the uplink and downlink transmission format can use the TDM slotted-mode, where a
single slot corresponds to the basic SVP size. In the second alternative, the uplink and
downlink are unchannelized. The second altemnative is more advantageous only if the on-
board processor has the capability of segmenting a large SVP into several basic SVPs; in
this case, the on-board processor can operate at single-slotted mode, where one slot
corresponds to one basic SVP.

These two alternatives of supporting multiple SVP sizes are tabulated in Table 3-1A
and Table 3-1B.

Table 3-1A: SVP Sizes Alternative 1 for SVP Header Option 1 (Scenario A)

SVP size information payload
1-cell SVP 57 bytes 53 bytes
2-cell SVP 114 bytes 110 bytes
4-cell SVP 228 bytes 224 bytes
8-cell SVP 456 bytes 452 bytes

Table 8-1B: SVP Sizes Alternative 2 for SVP Header Option 1 (Scenario B)

SVP size information payload
1-cell SVP 57 bytes 53 bytes
2-cell SVP 110 bytes 106 bytes
4-cell SVP 216 bytes 212 bytes
8-cell SVP 428 bytes 424 bytes

The SVP size alternative 1 with SVP header option 1 is referred to scenario A. The
SVP size alternative 2 with SVP header option 1 is referred to scenario B. For scenario A,
the simplest on-board operation is to segment the SVP into multiple basic SVPs and the
routing tag of the SVP is prepended in front of each basic SVP. The on-board switch is still
operated in single-slotted mode, where one slot corresponds to one basic SVP plus the
routing tag. The output port reassembles the basic SVPs back to the original SVP. All the
routing tags are removed before reassembly. (Note for the crossbar switch, the routing tag
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is not required to be sent with the packet during transmission, since the crossbar switch is
"centralized control not self-routing. In this case, the output port simply reassembles the
packets back to the original SVP. No removal of routing tags is necessary.) For scenario
B, the simplest on-board operation is to segment the SVP payload into multiple basic SVP
payloads and the header of the SVP is prepended in front of each basic SVP payload. All
the basic SVP headers are removed before reassembly except the header of the first basic
'SVP. After the SVP has been formed, the output port sends the SVP to the output
transmission link.

The disadvantage of the above operations is that the transmission of a large SVP
(containing several basic SVPs) through the switch can not be guaranteed to be
continuous. The reason is that output contention result among different input ports is
random unless some special mechanism or priority control is applied. The proposed
output contention control scheme for multiple sizes of SVPs is presented in Section 3.2.4.

If grouping of cells (or bits) into a SVP is based on the receiving earth station, the
additional information required for the SVP header is the receiving earth station ID. The
grouping method is more applicable to a satellite network with a few larger earth stations.
The receiving earth station ID is to identify the receiving earth station within the same
downlink beam. It is proposed that the SVP header consists of the following fields (see
Figure 3-12): the switch routing tag, size indication field, receiving earth station address,
quality of service (QOS) field, control field, payload type (PT) field, virtual channel number
(VCN), sequence number (SN), and forward error control (FEC) field.

8 bit 8 bit 2 bit 1bit " 1bit 2bit 6bit 4bit 8bit

Routing | Receiving| Size

Figure 3-12: Tentative SVP Header Option 2

The preliminary sizes chosen for the fields are: the routing tag 1 byte, the receiving
earth station address 1 byte, the size indication field 2 bits, QOS field 1 bit, control field 1
bit, payload type field 2 bits, VCN field 6 bits, SN field 4 bits, and FEC field 2 bytes. The
size of the SVP header has 6 bytes. Therefore, the basic SVP size consists of 59 bytes.

As discussed before, there are two altematives for the size of a larger SVP. The sizes
supported by the two alternatives are listed In Tables 3-2A and 3-2B.

The SVP size altemative 1 with SVP header opfion 2 is referred to scenario C. The
SVP size alternative 2 with SVP header option 2 is referred to scenario D.
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Table 3-2A: SVP Size Alternative 1 for SVP Header Option 2 (Scenario C)

SVP size information payload
1-cell SVP 59 bytes 53 bytes
2-cell SVP 118 bytes 112 bytes
4-cell SVP 236 bytes 230 bytes
8-cell SVP 472 bytes 466 bytes

Table 3-2B: SVP Size Alternative 2 for SVP Header Option 2 (Scenario D)

SVP size information payload
1-cell SVP 59 bytes 53 bytes
2-cell SVP 112 bytes 106 bytes
4-cell SVP 218 bytes 212 bytes
8-cell SVP 430 bytes 424 bytes

3.2.3 SVP Acquisition and Synchronization

The SVP acquisition and synchronization can be achieved using three schemes. The
first scheme follows the synchronization method used in the frame relay. The second
scheme follows synchronization method used in the TDM frame synchronization and a
frame format is required. The third scheme follows the techniques used in the ATM cell
header error control synchronization (ATM cell self-delineation) and no external frame
format is required.

Scenarios B and D should use scheme 1 or scheme 2. In this scheme, two SVPs are
separated by closing and opening flags, similar to the high-level data link control (HDLC)
flags. The disadvantage of this approach is that no duplication of the flag pattem is
allowed in the SVP. Therefore, bit stuffing/destuffing adds more complexity to the FPS.
The second scheme is to use a fixed size frame with a frame marker. The synchronization
scheme is very similar to ATM cell self-delineation procedure except the frame
synchronization uses a prestored unique word to search for the frame marker and ATM
uses the syndrome of the decoder to search for the cell header. in this procedure, the byte
boundary of the frame has to be established. Bit-by-bit searching is performed until the first
byte of the unique word is found. When the first byte is found, the next multiple bytes are
used to match with the unique word. If they do not match, the procedure enters bit-by-bit
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searching. If they match, the next n consecutive frame markers are compared with the
unique word. If they all match, frame synchronization is achieved. The frames are always
in synchronization unless m consecutive frame markers do not match with the unique
word. If this occurs, the procedure enters bit-by-bit searching. if one of the n frame
markers does not match, the procedure enters bit-by-bit searching. Since there are
multiple sizes of SVPs, some inefficiency may arise if the SVPs can not fit perfectly into a
frame. :

Scenarios A and C should use scheme 2 or scheme 3. As previously discused, since
there are multiple sizes of SVPs, some inefficiency may arise if the SVPs can not fit
perfectly into a frame. Scheme 3 does not have the disadvantage of scheme 2. Scheme 3
is discussed below. Since the SVP size is not fixed, the synchronization procedure used
for ATM cell header has to be modified such that the size indication information is included
in the synchronization process. The SVP delineation method is to use the correlation
between the 1-byte FEC and the 3-byte header (in Scenario A). There are three states in )
the SVP delineation state diagram: HUNT, PRESYNC, and SYNC (see Figure 3-13). The
HUNT state is used to search for the SVP header. The PRESYNC state is to verify that the
header found by the HUNT state is correct. The SYNC state is to maintain synchronization
of the SVP stream.

The implementation of the HUNT state for the multiple-size SVPs follows the same
design principle as discussed in [3-7]. In this state, the receiver searches for the SVP
header by using a correlation between the 3-byte header and the 1-byte FEC field. A bit-
by-bit search is used to identify the SVP boundary. When the first SVP boundary is found,
the location of the SVP is recorded and the second SVP boundary is searched. When the
second SVP boundary is found, the location of the second SVP is also recorded. The
interval between the first SVP and the second SVP is calculated. If the interval is multiple
of the size of the basic SVP, the initial acquisition is achieved and the state enters the
PRESYNC state.

When the receiver is in the PRESYNC state, the receiver will verify the SVP header
using the correlation between the SVP header and the FEC field. At the same time, the
receiver will extract the SVP size indication field to determine the size of the SVP. By
doing this, the receiver can identify the start of the next SVP, i.e., identify the boundary of
SVPs. If there is one incorrect SVP header within the next n SVPs, the state will retum to
the HUNT state, If the next n SVP headers contain no errors, the state enters the SYNC
state. In this state, the decoder performs error correction. The state will stay in SYNC until
m incorrect SVP headers are found. If m incorrect SVP headers are found, the state will
retum to the HUNT state.

The selection of the synchronization scheme is determined at the "High-Level Design”
task.
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Figure 3-13: ATM Cell Header Error Control Synchronization

3.2.4 Switch Operation for Multiple Sizes of SVPs

From the discussion in Section 2, the multicast crossbar is chosen to be the switching
architecture for Phase 2 development. The necessary modification of the switch operation
to accommodate the SVPs with multiple sizes is in the output contention resolution. From
the discussion in Section 3.1, the output port reservation scheme is most preferable for the
multicast crossbar. The following discusses the output port reservation scheme for a
crossbar switch to accommodate the SVPs with multiple sizes.

3.2.4.1 Point-to-Point Output Port Reservation

In this switch configuration, the operation of the switch has to be able to operate in
single-slot mode and multiple-slot mode concurrently. To facilitate the discussion, assume
the SVPs consist of single-cell SVPs (or basic SVPs) and two-cell SVPs only.

The operation for scenarios A and C is discussed first. The switch is operated on
slotted-mode, where the slot size is the same as the size of a basic SVP . If the incoming
packet is a 2-cell SVP, then the operation of the switch has to be modified to accommodate
that the packet size is larger than the siot size. For scenarios A and C, the input port has to
be able to reserve two contiguous slots in advance in order to successfully transmit the 2-
cell SVP. This modification can be achieved easily with the centralized ring reservation
scheme. There are three different implementations. The first implementation is that the
token generator generates two streams of tokens: one stream is for the next slot and one
stream is for the following slot. Each token represents one output port. If the incoming
packet is a basic SVP, the operation of the on-board switch is normal. The basic SVP only
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processes the token at the first token stream, i.e. the next-slot token stream. To avoid out-
of-sequence transmission, the 2-cell SVP has to reserve two tokens in two different
streams for the same output port simultaneously to successfully transmit the SVP. During
transmission, the input port prepends the routing tag to each basic SVP within the same
SVP. (Note for the crossbar switch, no routing tag is required for the SVP during
transmission.) Due to the routing tag overhead, the switch has to operate at a higher
speed than the link speed. .

The second implementation is to use only one token stream. However, the input port
has the capability of keeping the token for multiple slots. If the input port needs to transmit
a 2-cell SVP, it has to seize the token for two time slots once the first token for the 2-cell
SVP is reserved. The output reservation is executed only once for the first basic SVP of
the 2-cell SVP. When the input finishes transmitting both of the basic SVPs in the SVP, the
input port releases the token.

The third implementation is to allow both of the basic SVPs in the 2-cell SVP
participate output reservation. However, priority control is applied such that both of the
basic SVPs in the 2-cell SVP can be transmitted contiguously. The priority is given to the
second basic SVP of the 2-cell SVP, when there is output contention between a single-cell
SVP and the second basic SVP of the 2-cell SVP. However, the first basic SVP of the 2-
cell SVP should have the same priority as a single-cell SVP. Note it is not possible to have
contention between two second basic SVPs belonging to two different 2-cell SVPs. The
design considerations for priority control are discussed in Section 3.3.

When the first basic SVP arrives to the output port, the output port examines the size
indication field and allocates the memory space. When the successive basic SVPs coming
to the output port, the basic SVP payload is placed into the proper location for reassembly.
When all the basic SVPs within the SVP have been received, the SVP can be transmitted
to the output link.

The operation for scenarios B and D is to segment a 2-cell SVP into two single-cell
SVPs on-board. After segmentation, the header of the 2-cell SVP is copied to the second
basic SVP. Due to the header overhead, the switch has to operate at a higher speed than
the link speed. The output port examines the size indication field and performs assembly if
necessary. In this situation, it is possibie that two basic SVPs belonging to the same SVP
do not come into the output port contiguously. This discontinuity complicates the design of
the output buffer. The discontinuity can be avoided if priority control is executed. Priority
should be given to the second basic SVP of the 2-cell SVP when the second basic SVP is
contended with other types of SVPs.

Since the on-board switch is operated in single slotted-mode, the on-board processor
operation for scenarios B and D will not be discussed any further.

3.2.4.2 Point-to-Multipoint Output Port Reservation

Since the switching fabric is nonblocking, the output port reservation scheme used for
point-to-point connections can also be used for point-to-multipoint connections with a slight
modification. For point-to-multipoint connections, each input port can reserve more than
one and up to N output ports at a time.
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The operation of the multicast switch for SVPs with different sizes is complicated by the
multicast connection. It is very unlikely that all the multicast basic SVPs in the same SVP
can reserve all the output ports in advance; hence, the output reservation process
proposed for the point-to-point case has to be modified. As shown in Table 3-3, there are
four possible operations for an input port to handle a multicast packet.

Table 3-3: Four Possible Operations for Input Port to Handle a Multicast Packet

operation 1 operation 2 operation 3 operation 4

call splitting yes yes no no

continuity yes no yes no

If call splitting is allowed for the multicast packet at an input port, it means a muliticast
packet can finish its transmission in multiple siots. If continuity is a requirement, it means
the basic SVPs within the same SVP have to transmit to the output ports contiguously.
These different operations are explained below.

Assume a multicast 2-cell SVP is destined to output ports 0, 1, 4 and 6. For operation
1, a multicast basic SVP can finish its transmission in multiple slots. However, the first
basic SVP and the second basic SVP have to be transmitted to the same set of output
ports contiguously. Assume that the first basic SVP successfully reserves output ports 0
and 6 at slot S, then the second basic SVP should also reserve output ports O and 6 at slot
S+1. If this condition is achieved, the SVP can be transferred to outputs 0 and 6. The
transmission of the basic SVP to destinations 1 and 4 can be accomplished latter.

For operation 2, a multicast basic SVP can finish its transmission in multiple slots, and
the first basic SVP and the second basic SVP do not have to be transmitted to the same set
of output ports contiguously. Assume that the first basic SVP successfully reserves output
ports 0 and 6 at the slot S, then the second basic SVP, to avoid out-of-sequence, can at
most reserve output ports 0 and/or 6 (but not 1 and 4) at any slot T, where T> S. The
second basic SVP can be transmitted to output ports 1 and 4 only after the first basic SVP
has finished its transmission to the output ports 1 and 4.

For operation 3, a multicast basic SVP must finish its transmission in one slot, and the
first basic SVP and the second basic SVP have to be transmitted to the same set of output
ports contiguously. In this case, the basic SVP has to reserve output ports 0,1,4, and 6 at
the same slot and the second SVP should also reserve output ports 0,1,4, and 6 at the next
slot. If this condition cannot be achieved, the SVP cannot be transmitted.

For operation 4, a multicast basic SVP must finish its transmission in one slots, and the
first basic SVP and the second basic SVP do not have to be transmitted to the same set of
output ports contiguously. In this case, the first basic SVP must reserve output ports 0,1,4,
and 6 at the same slot (S) and the second basic should aiso reserve output ports 0,1,4,
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and 6 at same slot (T), where T > S. However, the first basic SVP transmission time and
" the second basic SVP transmission time does not have to be contiguous.

3.2.5 The Proposed SVP Formats

The header of SVPs contains the routing tag and other satellite network intemal fields
such as payload type and QOS. The routing tag is used to route through the on-board
switch. The routing tag is inserted in the SVP header at the earth station. For ATM
application, The VPI has a local significance in the satellite network. The VPI needs to be
retranslated at the earth station. However, no VPI retranslation is required at the on-boar
switch. Grouping of cells (or other types of traffic) should be based on the downlink beam if
there are a large number of terminals in the network. Grouping of cells (or other type of
traffic) should be based on the receiving earth station if there are a few, large earth stations
in the network. If single-size SVP is chosen for Phase 2 development, the SVP size should
be less than or equal to that of 4 cells. The formats of the two alternatives for single-size
SVPs are shown in Figure 3-14. If the traffic foreseen is very diverse, then multiple-size
SVPs should be considered. There are four different sizes: single-cell SVP, 2-cell SVP, 4-
cell SVP and 8-cell SVP. The multiple size SVP header is shown in Figure 3-9 and the
SVP format is shown in Figure 3-11 (Alternative 1). For multicast multiple-size SVPs, the
switch operation should allow call splitting and enforce continuous transmission for the
SVP packet through the switch. Final selection of SVP format is determined at the "High
Level Design" task.

8bit 1bit 1bit 2bit 8bit 4bit 8bit

R‘}‘;g"g qos| control] PT VeN| SNIFEC 8 byte

Singie-Size SVP Altemative 1

8bit  2bit 1bit 1bit 2bit 6bit 4bit 8bit

Routing| Size
Tag |Inication| Q0S| Conoll PT |VCN/ SN|FEC]  83byte | 53bjle | S3bye | S3byte

Single-Size SVP Altemative 2

Figure 3-14: The Proposed Single-Size SVP Formats

-

COMSAT Laboratories * 3-31




3.3 Priority Control

This section investigates how to effectively implement priority control for the multicast
crossbar switch. There are two forms of priority control: priority control for schéduling the
packet transfer at a switch and priority control for congestion [3-8]. Priority control for
scheduling the packet transfer in a switch is discussed using the output port reservation
scheme presented in Section 3.1. In congestion control, low-priority packets are dropped
before high-priority packets in case of congestion to minimize the influence and to maintain
the QOS of higher priority connections. Priority for congestion control will be discussed in
the task " Critical Element Design and Simulation”.

Researchers use two approaches to tackle the priority control (for ATM): switch
throughput and buffer management. By properly dividing the switch throughput among
packets with different priorities, the QOS of high priority packets can be guaranteed. By
careful design of the buffer, low priority packets will be dropped before the high priority
packets. Subsection 2 presents the priority control schemes (proposed in the past) used in
a multicast crossbar switch and the implementation issues. Subsection 3 presents the
buffer management scheme at each input port and a new output port reservation scheme.
The new output port reservation scheme has the capability of adjusting the QOS of each
connection based on its priority. The salient feature of the new output port reservation
algorithm is that when the QOS of the high-priority packets has been set to the desired
value, the QOS of the low-priority packets can be adjusted without affecting the QOS of the
high-priority packets. The recommended priority control scheme for Phase 2 development
is presented in Subsection 4.

3.3.1 Different Priorities

To provide different levels of quality of service (QOS) for different classes of services,
priority control on the fast packet switch is necessary. In general, there are two parameters
associated with the QOS of a packet: the time priority and the loss priority. The time priority
is used to distinguish real time traffic (such as circuit switched data) and non-real time
traffic (such as packet switched data). With time priority, the packet transfer delay (PTD)
and packet delay jitter (PDJ) of high-priority packets are reduced at the expense of low-
priority packets. The loss priority is used to distinguish loss sensitive data and loss
insensitive data (such as datagram). With loss priority, the packet loss ratio (PLR) of the
high-priority packets is reduced at the expense of low-priority packets. For ATM cells,
priority control is performed using the cell loss priority (CLP) bit in the ATM cell header.
The CLP bit can provide priority control for two classes of services. If more than two
classes of services are supported, then the reserved (RES) bit in the ATM cell header can
also be used for priority control. Satellite virtual packets (SVPs) are created by prepending
a header to a group of cells (or other types of data) destined to the same downlink beam
for unified routing, control, and management. The formats of SVPs have been presented
in Section 3.2. The QOS field in the SVP header can be used to segregate the traffic into
different classes, and different levels of control can be applied to different classes.
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3.3.2 Priority Control using the Centralized Ring Reservation
Scheme

Priority is used to meet different packet loss ratio requirements and switch delay
requirements for different services. A high-priority packet is guaranteed to win the output
contention resolution when it is contended with other low-priority packets. The centralized
ring reservation scheme has been chosen to be one of the output contention resolution
schemes in Section 3.1. Only one type of priority is considered. It is based on one of the
QOS requirements (such as packet loss ratio).

Priority control for a multicast switch with nonblocking switching fabric, input buffering
and centralized ring reservation scheme to resolve output contention was discussed in
Reference 3-9. Two approaches were proposed to implement the priority control.

The first approach, referred as "overwrite" scheme, is to modify the token format. The
priority level is included in the tokens. A typical format of tokens is shown in Figure 3-15.
There are N tokens for N output ports and there are N priority subfields for N tokens.
Whenever an input port reserves the output port, the priority of the packet waiting in the
queue is inserted in subfield P;, where i is the position of token i. Following the centralized
ring reservation algorithm, each input port tries to reserve the output port by examining the
output port availability. If the output port has been reserved, then the input port also checks
the priority level associated with this token. If the priority level is equal to or higher than its
own priority level, then no action. If the priority level is lower than its own priority level, the
input port uses its own priority level to "overwrite" the priority subfield. If this occurs, the
input port whose priority subfield has been overwritten needs to be notified. The authors in
Reference 3-9 did not describe how to implement the notification. In fact, the notification
scheme is straightforward. After all the input ports have finished reservation, the token
stream is sent back to the input ports one more time for confirmation. Every input port
checks the priority subfield associated with the token to see if the priority is still the same as
its own priority. If they are the same, confirmation is achieved and the packet can be
transmitted at the beginning of the next slot. If they are different, it means some higher
priority packet at another input port has overwritten the token for the particular output port.
The result is that the low-priority packet has to retry the reservation request at the next slot.
In summary the first scheme loops the tokens through the input ports twice. Loop 1 is for
the input ports to reserve the output ports and loop 2 is used for the input ports to confirm
that the reservation of the output ports is successful.

The second scheme, referred as "loop" scheme, is to send the tokens to the input ports
k times , i.e., to loop through the input ports k times, where k is the number of priority levels.
Starting from priority k (the highest priority), only the packets with priority k can reserve the
output ports at this run. The next run is for priority k-1 packets and so on. With this
particular scheme, the priority subfield in the token stream is not necessary since the
priority control is performed on different priority levels of packets at different runs.
Consequently, modification of the token format is not needed, i.e., the token format only
consists of the output port bit map. This scheme guarantees that a high priority packet wins
over a low priority packet during output port reservation. If two packets have the same

COMSAT Laboratories « 3-33



priority, the resolution is based on the sequence of token passing. Evidently to achiever
fairness, the start of the token stream must be altemated.

Priority Subfield , Output Port Availability Subfield

A A_lA

0 1 il n2] n1 0 1 n21 n-

A. : Output Port i Availability

P : Priority of the Packet that Requests Output Port i
i A

Figure 3-15: Token Format With Priority Subfield

The "overwrite" scheme only needs loop through the input ports twice, but it comes with
a large overhead on the tokens. The "loop" scheme needs to loop through the input ports k
times (where k is the number of priority levels) with a small overhead on the tokens. There
is a trade-off between the "overwrite" scheme and the “loop" scheme in terms of hardware
complexity and speed requirement. Since the number of priority levels implemented is 2 in
this development, the "loop" scheme is chosen to implement priority control for low
overhead and easy implementation.

The CLP bit in a cell or the QOS bit in a SVP is used as a priority index. The number of
priority levels is 2.

3.3.3 Buffer Management

The next issue is how to manage the buffer at each input port for packets with different
priorities. The first one is to use the "threshold" scheme. In this scheme, there is only one
queue and all the arriving packets are stored in the queue in a FCFS fashion. When a low-
priority packet arrives, the number of tow-priority packets in the queue is checked. If the
number is above a certain threshold, the low-priority packet is dropped. The second one is
a variation of the first one. In this scheme, there is only one queue and all the arriving
packets are stored in the queue in a FCFS fashion. Low-priority packets are allowed to
enter the queue only if the queue length is less than a certain threshold. The third one is to
use the "push-out” scheme. There is only one queue and all the arriving packets are
stored in the queue in a FCFS fashion. When the buffer is full, the new arrival high-priority
packets will push the low-priority packets out of the queue (if there is any) and be stored.
The fourth one is a variation of the third one. The high-priority packets are stored in front of
the low priority packets. When the buffer is full, the new arrival high-priority packets will
push the low-priority packets out of the queue and be stored. Within the same priority, the
packets are stored in a FCFS fashion. The first three schemes are effective for an FPS with
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output queueing, but not for an FPS with input queueing. The reason is that the HOL
blocking for one class of packets interferes the other class of packets. Although the fourth
scheme can largely improve the performance of the high-priority packets, the performance
of the low-priority packet is uncontroliable. The fifth one is to use complete partitioning
scheme. In this scheme, there is a separate queue for each priority. To completely
eliminate the interactions among the packets of different priorities, the complete
partitioning scheme should be used. .

The complete sharing (one-queue) buffer management is not effective for priority
control since segregation of connections based on their QOS cannot be performed. The
best approach is to provide separate queues for each priority, i.e., using the complete
partitioning buffer management. Since there are two priority levels, there are two queues
in each input port, and each queue is used to hold the arriving packet based on their
priority level. The insertion/removal of the packets to/from the queue should be :
implemented in a link list fashion. There is no upper limit for the high-priority queue length,
but a limit is set for the low-priority queue length. :

As discussed in Section 3.1, the throughput of a switch with input buffering is limited
due to the head of line blocking problem. To increase the throughput of the switch, the
input port has to examine more than one packets in the queue (or to use a larger "checking
depth"). Since there are two queues in the input port, the checking depths for different
queues with different priorities can use different values. Denote the checking depth for
high priority queue dh and that for low priority queue di. The packets in the high priority
queue are examined before those in the low priority queue. it is assumed that the sum of
the checking depths for two queues is fixed (dp + d = d, where d is a constant), i.e, the
maximum capacity of the switch is fixed. Now the issue is how to distribute the checking
depths (or the switch capacity) to different services with different priorities to guarantee
their QOS. The major concem with priority control is that although the packet loss ratio for
the high priority packets can be guaranteed to be below a certain value (e.g 10-9), the
packet loss ratio for the low priority packets (e.g 106) can not be guaranteed or can not be
easily controlled. Using the centralized ring reservation scheme and different queues with
different checking depths, it is found that the packet loss ratio for each priority level can be
set to the desired value by adjusting the checking depth for each queue [3-10].
Furthermore, adjusting the QOS for the low-priority packets does not affect the QOS of the
high-priority packets.

The maximum capacity for packets with high priority, denoted as MAXCp, is achieved
when dh = d-1 and dj = 1. The maximum capacity for packets with low priority, denoted as
MAXC;, is achieved when dh = 1 and dj = d-1. The values of MAXCp and MAXC; are fixed.
By varying dh and dj (with dh + d} = d), the actual capacity of switch allocated for packets
with different priorities is adaptable. The values of dh and d! should be programmabile to
account for different traffic scenarios. When the amount of high-priority traffic is small, the
checking depth (dp) for high-priority queue can be small and the checking depth (dj) for
low-priority queue should be large; and vice versa. The determination of the values (dn
and dj) should be part of admission control procedure.

The reason that the values of MAXCp, and MAXC; are fixed is because the high priority

queue is always examined before the low priority queue. To make the values of MAXCp,
and MAXC, also adaptable, the high priority queue and low priority queue can be
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examined in a prespecified order. For example, the sequence of examining the high
priority queues first and then the low priority queues can be reversed once every m cycles.
With this mechanism, the maximum capacity (MAXCh) for high priority packets and that
(MAXC)) for low priority packets are adjustable. The maximum capacity for packets with

different priorities is a function of M.

3.3.4 The Proposed Scheme

The recommended approach is to have a separate queue for each priority at each
input port. 1f the number of priorities is large, use the "overwrite" scheme. If the number of
priorities is small (<4), use the "loop" scheme. Since the number of priority levels
implemented is < 4 in this development, the “loop" scheme is chosen for low overhead and
easy implementation. The proposed multicast crossbar switch configuration considering

two priorities is shown in Figure 3-16.
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Figure 3-16; Multicast Crossbar Switch Configuration Considering Two
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3.4 Integration of Circuit and Packet Switched Traffic

This subsection addresses the design considerations of integrating circuit and packet
switching for a fast packet switch. The difference between circuit switching bandwidth
assignment and packet switching bandwidth assignment is addressed first. The
alternatives of implementing an integrated switch are discussed. Based on the discussion,
one approach is recommended.

Conventional circuit switching employs deterministic multiplexing. All the required
capacity from the source to the destination is reserved in advance. When a terminal
receives a call request, the terminal sends this request to the scheduler. The scheduler
assigns a number of uplink slots to the sending terminal and a number of downlink slots to
the receiving terminal. The uplink and downlink access schemes use TDMA (same as
ACTS). A channel is set up from the uplink siots to the downlink slots. (For the sake of
discussion, only simplex call is established.) These allocated slots are used exciusively by
the circuit connection. The slot position (in a TDMA frame) itself identifies the source and
destination addresses. The on-board switch routes the connection based on the slot
position. The switch path for a circuit connection is set up and reserved by the scheduler.

Packet switching employs statistical multiplexing. The terminal does not request
capacity on a packet-by-packet basis. For B-ISDN, the required bandwidth for a new
connection is based on the available information in the call setup message and the current
network loading status. The bandwidth assignment procedures are part of admission
control. Admission control is not considered in this study. Assume the required bandwidth
(in terms of number of slots) for a connection is computed by the scheduler following a
bandwidth assignment procedure. Assume the uplink access scheme uses TDMA and the
downlink access scheme uses TDM. The scheduler assigns a number of uplink slots to the
sending terminal and reserves a number of downlink slots. The packets destined to
different destinations at the sending terminal can use any uplink slot assigned to the
terminal for transmission. The destination address is included in the packet header. When
the packets arrive to the on-board FPS, the FPS has to perform output contention
resolution since packets from different input lines may be destined to the same output port
at the same time. The design consideration of output contention resolution is addressed in
Section 3.1. Some recommendations are made. After contention is resolved, the packet is
self routed through the switching fabric. When the packet is routed to the proper output
port, the packet can use any one of the reserved downlink slots for transmission.

There are two ways of providing both circuit switching and packet switching functions
on-board. The first one is to use two separate switches: one circuit switch and one packet
switch. The second one is to use one integrated fast packet switch. In this study, it is
assumed an integrated FPS is used to provide service for both circuit switched and packet
switched traffic. The basic requirements of an integrated switch are to provide services for
both circuit switched and packet switched traffic and to preserve the QOSs of each
connection.

An integrated switch has the following advantages. Integration simplifies the network
management functions and the makes the introduction of new services with different
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characteristics easier. Integration also provides simpler implementation and control, less
hardware, easy fault tolerance structures, reduced mass and power, and unified routing
procedure. Most importantly, the integrated switch is more flexible in allocating the
capacity of the switch between circuit and packet switched traffic.

- The circuit traffic is segmented into packet formats (such as cells or SVPs) at the
sending terminals and reassembled into channel formats at the receiving terminals. Both
packet and circuit have the same packet format. The uplink uses the slotted transmission
format (TDMA). The unified packet format occupies one siot of uplink frame. The
integrated access scheme uses a combination of TDMA and packet transmission.

In general, there are two approaches to emulate the circuit switching operation using a
fast packet switch. The first one is to reserve the switch path for circuit packets belonging
to the same connection each frame. Since the switch path is reserved, the circuit packets
are guaranteed to pass through the FPS without any queueing delay. There is no output
contention among circuit switched traffic. The output contention between circuit switched
traffic and packet switched traffic can be eliminated using priority control. Consequently,
delay jitter of circuit connections is minimized. The second one is to reserve the switch
capacity for circuit packets each frame. Since only switch capacity is reserved, circuit
packets may still have output contention with other packets. Circuit packets may suffer (a
small amount of) queueing delay at the switch. A smoothing buffer is required at the
receiving terminal to compensate the delay jitter. Designate the first approach "Switch
Path Reservation Scheme" and the second approach "Switch Capacity Reservation
Scheme". Both approaches are discussed.

3.4.1 Switch Path Reservation Scheme

In this scheme, the scheduler not only assigns slots to the sending terminals for a
circuit connection request, but it also resolves switch output contention for circuit slots
(connections) belonging to different uplink TDMA carriers. (This is similar to ACTS
scheduling or SS-TDMA scheduling.) The capacity scheduling and switch output
contention can be performed using a centralized scheme or a distributed scheme.

Based on a previous study for SPAR, centralized capacity scheduling is more
advantageous than distributed capacity scheduling comparing signaling capacity,
scheduling assignment conflicts, scheduling assignment delay, information
synchronization, scheduling algorithm flexibility, reliability, and processing requirement.
Nevertheless, both centralized and distributed schemes are discussed.

A centralized scheme is discussed first. Before a slot can be assigned, the scheduling
algorithm has to examine several constraints such as the maximum capacity of the sending
terminal, the maximum capacity of the receiving terminal, and the total system capacity. In
order to reserve the switch path, switch output contention resolution for circuit switched
traffic becomes another constraint from the view point of the scheduling algorithm. After
the uplink slots are assigned to the terminal, the terminal uses the slots for transmission.
Designate the circuit switched packets as circuit emulation (CE) packets. Since the (CE)
packets are sent from the terminals at specified slots, they will also arrive to the switch at
specified time every frame. Remember the switch path has been reserved for the CE
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packets (by the scheduler). Assign CE packets with high priority.and data packets with low
priority. Let the CE packets participate in the output contention resolution with other data
packets at the switch. Since CE packets have a higher priority than the data packets and
the scheduler already resolves output contention among CE packets at the same siot time,
transmission of the CE packets at the next slot time is guaranteed.  Since the CE packet is
prepended with a routing tag, it can be self routed through the switching fabric. No circuit
switched buffer is required at the input port in this case.

A distributed scheme is discussed as follows. Each terminal has a complete busy/idle
status of the slots in the system. Each busy circuit slot is associated with one destination
(or multiple destinations for multicast connections). The terminal assigns slots to itself after
the capacity scheduling and output contention resoiution are performed locally. The
terminal sends out the assignment information to all the terminals for confirmation. After
two round trip delay, if the terminal gets an assignment conflict message, the terminal
schedules another set of slots. Otherwise, the terminal can start transmission. The output
contention resolution scheme for CE packets at the switch follows the discussion in the
previous paragraph.

3.4.2 Switch Capacity Reservation Scheme

In this case, the CE packets (belonging to different connections) can be transmitted at
any assigned slots at the sending terminal in one frame. This implies that the capacity at
the terminal is shared by multiple circuit switched connections and possibly by packet
switched traffic. The circuit switched traffic is transmitted on these assigned slots before
the packet switched traffic. If there is capacity left and there is packet switched traffic, then
packet switched traffic can use the remaining capacity for transmission. This increases the
bandwidth efficiency due to statistically multiplexing. Since arrivals of CE packets to the
on-board switch are not periodical, there is no need to reserve the switch path for the CE
packets every frame. The scheduler is only responsible of allocating slots without
resolving output contention among CE packets. However, priority control is required to
bound the circuit switched delay jitter at the switch. The priority control with the centralized
ring reservation scheme has been discussed in Section 3.3. Some necessary
modifications are described below. The priority of a CE packet is higher than that of a data
packet during output contention resolution. If two CE packets are destined to the same
output port at the same time, one of the CE packets is chosen randomly. When a CE
packet loses the contention resolution, the CE packet becomes an old CE packet. The
priority of an old CE packet is higher than that of a new CE packet. This implies that the
number of priorities is at least four by considering old CE packets, new CE packets, high-
priority data packets, and low-priority data packets. A small circuit switched buffer is
required at the input port to hold the CE packets if output contention among CE packets
does occur. It is expected the size of the circuit switched buffer is very small.

3.4.3 The Proposed Integration Scheme

The switch path reservation scheme places a high processing requirement on the
scheduler, and there is no statistical multiplexing gain for circuit switched traffic at the
terminal and the switch. However, the circuit switched traffic delay jitter is minimized. The
switch capacity reservation scheme has less demand on the scheduling processing
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requirement, and the terminal capacity and the switch capacity are fully utilized. The circuit
switched traffic suffers queueing delay at the terminal and the switch. The delay jitter has

to be compensated at the receiving terminal.

The switch capacity reservation scheme is recommended. There are three logical
subgueues at the input port, one for the circuit switched traffic, one for high priority packets
and one for low priority packets. The insertion/removal of the packets. to/from the
subqueue should be implemented in a link list fashion. There is no upper limit for the
circuit switched data queue length and the high-priority queue length, but a limit is set for
the low-priority queue length. The proposed multicast crossbar switch configuration
considering integrated operation is shown in Figure 3-17.
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Figure 3-17: Multicast Crossbar Switch Configuration Considering Integrated
Operation
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3.5 Fault-Tolerant Operation

A system with fault-tolerance is defined as a system which is able to perform the
assigned functions correctly in the presence of either hardware failures or software errors.
Without a proper fault-tolerant design, a single point failure in the FPS may cause the
whole satellite communications system unoperational. Conventionally fault-tolerance can
be achieved using two approaches: hardware redundancy and software coding. The
degree of fault tolerance depends on how well the faults can be detected and repaired or
replaced. Clearly the more hardware/software redundancy is put into the system, the
system has a higher fault tolerance. However, more redundancy also means higher cost,
mass, and power. The procedures used to detect the faults, locate the faults, and
reconfigure the system to be fault free are overhead functions; they also may create a new
class of faults which the basic system does not have. A fault-tolerant design of the FPS
must be started at the very earliest stage such that a trade-off among the additional cost,
mass and power as a result of fault-tolerant design, reliability and performance can be
made. '

The first step to achieve fault tolerance is to eliminate hardware design and software
development faults. The general requirements to design a fault-tolerant FPS were
reported in Reference 3-11. They are:

* the probability that packets are duplicated, dropped or corrupted due to a
fault should be minimized

« a failure of components will not affect the existing connections

* corrupted ATM cells (as a resuit of faulty component) will not affect other
normal cells

» The OBC should be able to detect any faulty path in the switch

« All the modules (including the redundancy) must be checked for health
status by the OBC

« testing of different modules should not interfere the existing traffic
*» There should be no single point failure.

Another alternative to check the FPS modules is to use ground terminals. Both fault
detection and fault diagnosis procedure executed by the OBC and ground terminals are
presented in this subsection.

For on-board FPS, the other requirement is that the power consumed by the redundant
units should be minimized. In general, the on-board redundant units are cold standby.
Some vital components must be duplicated such as clock, power supply, and OBC.

A module should be designed in such a way that any single point failure should not
disable the module. For example, failure of the power pin disables the whole chip if the
chip only has one power pin. Therefore, the chips used in the FPS should have spare
power pins. There are two approaches of configuring the spare power pins. Let the total
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number of power pins be p. The first approach is that each power pin handles :—)of power

loading. If one power pin fails, each power pin handles 51—1 of power loading. The second

approach is that the spare power pins are in open circuit mode. When the master power
pin fails, one of the spare power pins is switched back on. The power pin and the
redundant pins may come from different power sources. It may not be justifiable to
duplicate the whole module simply because there is only one power pin in the module.
Instead of duplicating the module, more power pins should be provided. Evidently if off-
the-shell components are used in building the FPS, the intemal design of the components
. can not be modified. If a component is built in house, special fault tolerance can be added
into the design (such as spare power pins).

In this subsection, fault tolerant design is discussed only at the system level. The
component fault tolerant design (such as memory chips and IO units) and intemal fault
tolerant design (such as memory celis) will be exploited in the "High Level Design" task.
General fault tolerant techniques are discussed; only part of the techniques will be used in
the breadboard design., The hardware redundancy approach is discussed for OBC, input
ports, switching fabric, output ports, and output reservation module. The software
redundancy approach (coding) is discussed for memory. In general, fault tolerant
operation comprises the following steps [3-12]:

« fault detection: to determine whether a fault exists using hardware or
software approaches.

« fault diagnosis (fault location): to pinpoint a fault using hardware or software
approaches.

« fault isolation: to prevent the errorneous information from propagating to
other healthy components.

« fault replacement/reconfiguration: reconfigure the system such that the faulty
module is replaced or repaired.

3.5.1 OBC Fault Tolerant Design

The OBC is the most crucial component for FPS fault-tolerant operation. The high-level
functional description of an OBC is described in Section 4. OBC must have at least 1-for-1
redundancy. Furthermore, OBC may have two input ports and two output ports connected
with the switching fabric to facilitate fault detection procedure and to increase fault
tolerance. The OBC must have self-diagnostic software and self-checking circuit to detect
its own errors and faults.

There are three different fault-tolerant architectures for the OBC with 1-for-1
redundancy [3-12].

In the first architecture, both controllers perform self-diagnosis (or external-diagnosis by
the ground station). One OBC is the master and the other one is the slave. If the master
fails, the slave is notified by some detection circuit. Take the communication controfler
developed at E-Systems Inc. as an example [3-13]. The master is required to reset a timer
at every fixed interval. If the timer is not reset, a (separate) time-out circuit notifies the slave
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.and the slave resumes the operation. The disadvantage of this architecture is that if the
time-out circuit fails to notify the siave controlier, the system is stuck with the fauity master
controller.

In the second architecture, both controllers perform self-diagnosis (or extemnal-

-diagnosis by the ground station) and also cross-diagnosis. There are a primary controller
and a secondary controller. The cross-diagnosis is to check and test the status of the other
controller. Both controllers are required to perform a certain operation such as store the
status of some registers in a shared memory. Both controllers are required to place data
(health status) into the shared memory, and both of them also check the memory contents
constantly. If one of the controller fails to place the data in the memory, an indication of
failure in the controller occurs. The error-free controlier resumes the operation. If one
controller is in fault, the system becomes a one-controller system. In this case, the
. remaining controller keeps performing self-diagnosis. If the controller detects errors and it
can not recover the errors, the controller should notify the ground control station. The
ground control station may disable the controller and control the FPS directly from the
ground.

In the third architecture, not only both controllers perform self-diagnosis (or external
diagnosis by the ground station) and cross-diagnosis, but also both controllers compare
the results of each control action (replication check). If the results do not match, faults
occur at one of the two controllers. If the self-diagnosis and cross-diagnosis are able to
identify the faulty controller, the remaining controller is the primary controller. If both
controllers considered themselves to be fully operational, then the ground control station
has to perform external diagnosis to identify the faulty controller.

The other altemative is to use the majority voting architecture. This approach was
adopted in Reference 3-14 to design an on-board satellite switch controller for microwave
switch matrix. There are four redundant controllers. In normal operation, three controllers
are operated with 2 out of 3 voting and the other one is cold standby. If one of the three
controllers fails, the cold standby becomes operational. If two controllers fail, the
remaining two controllers performs replication check for their results (the third architecture
mentioned above). The control data stored in the controller is FEC encoded. The control
data is decoded when it is read out from the controller. When the results from the
remaining two controllers do not match, the result which does not have any error is
selected. After this, the system becomes a one-controller system.

Extemnal diagnosis of the OBC from a ground station to verify its operation is always
required.

The OBC communicates with different input ports and output ports through the
switching fabric. To improve the fault tolerance, the OBC may have two inputs (input N and
N+1) and two outputs (outputs N and N+1) connected to the switching fabric (see Figure 3-
18). An input port can use either output N or output N+1 to communicate with the OBC. If
the OBC is capable of processing the incoming packets twice faster than the link speed,
the OBC can receive two packets simultaneously from different input ports. ‘If not, the OBC
can only receive one packet at a time. The extra input and output is provided only for
redundancy. -
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Figure 3-18: Basic Configuration of FPS

Basically, the OBC is a microprocessor-based module. The fault detection and
diagnosis procedure for a microprocessor-based module was discussed in Reference 3-
13. The following discussion foliows that in Reference 3-13.

The fault detection procedure is to apply a set of input test patterns to a component and
the output responses are verified. If the verification fails, faults occur at the component
under test.

There are two testing approaches: concurrent and explicit. In the concurrent approach,
the data itself (to be processed by the component) is the test pattern. A monitoring circuit
examines the output response. A typical example is the parity checking (error detection
coding) or error correction coding. Test with coding can be applied to RAMs and LSl
circuits. These devices are referred as self-checking circuits since a fault can be detected
by verifying the output of the component [3-15]. The self-checking circuit may create an
additional cost of 20% compared with the original circuit [3-12].

In the explicit approach, special data is used as test patterns. The test can be
performed extemally or internally by the component itself. The test pattemns can be stored
in a ROM or be computed in real time using an algorithm. A typical implementation of
generating test patterns by an algorithm is to use a counter.
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3.5.2 Output Port Redundancy

Two ways of implementing output port redundancy are identified.

3.5.2.1 1-for-N Redundancy

In 1-for-N redundancy, there is one redundant output port. The configuration is shown

in Figure 3-19.

Input Link 0 Input Port 0 Output Port 0 . Output Link 0
Input Link 1 [inpetPort1 | ->|Ou utPort 1 IL utput Link 1
p 1 p | —- tp MUX tp
input Link 2 InputPort2 | g > ot Output Port 2 4 MUX |——Output Link 2
N+3xN+3 o
° Switchinng |
Fabric
Input Link N-1 - ]l input Port N-1 ll > .—l Output Port N-1i MUX utput Link N-
— mux 1t Input Port N » N N Output Port N
Redundant N+1 N+1 Redundant
InputPort OutputPort
N+2 N+2 j
MUX MUX
08C
L———b . l

Figure 3-19: 1-for-N Redundancy Configuration for Output Port

3.5.2.1.1 Fault Detection by OBC

Either on-line testing or off-line testing can be adopted. Testing should be performed
when the traffic loading is light. For off-line testing, the output port N can replace the output
port under test temporary and isolate output port under test completely.

A loop-back method is used to check the output ports (and the input ports). Let output
port 0 be the module under test. The OBC sends packets with known patterns using input
N+1 through the switching fabric to output port 0. Output port 0 sends the packets through
the multiplexer back to the OBC. Sending these test packets to output port 0 may slightly
increase the switch loading. When the OBC receives the test packets, the OBC check the
pattemns to see if they match with the original ones. If they do not, faults are detected and
fault-tolerance operation enters fault diagnosis stage. If no faults are found, the OBC tests
the next output port following the same procedure.
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The redundant output port N should also be checked by the OBC constantly to make
sure it is at the good state.

3.5.2.1.2 Fault Diagnosis by OBC

If faults are detected, faults may occur at the output port 0 or the switching fabric
(between input N+1 and output 0). The OBC sends the same test packet through a
different switching fabric path (using input port N+2) to output port 0. If faults still exist,
output port 0 are faulty; otherwise, one of the switching fabric paths is in error.

3.5.2.1.3 Fault Recovery and Fault Reconfiguration by OBC

When faults are found at the output port, the OBC has to determine whether the faults
can be recovered. For example, a memory error can be recovered by instructing the
read/write operation to skip the erromeous locations. If the faults are not recoverable, the
output port will be isolated and be put in off line. The multiplexer is set in such a way that
output line 0 will receive traffic from output port N (see Figure 3-19). If the routing tag of the
packet is prepended at the input port, the routing tag translation tables have to be updated
at each input port to reflect the replacement. If the routing tag is added at the ground
terminals, then the OBC has to send special instructions to all the terminals to update the
translation tables.

3.5.2.2 m-for-N Redundancy

There is a (N+m) x N output relay switch in front of the N+m output ports. The switch
size is (N+2+m) x (N+2+m). There are m redundant output ports available. This
configuration is shown in Figure 3-20. The fault detection and fault isolation can apply the
same procedure mentioned above. When faults are detected in one of the N output ports,
the defected output port is put off-line and the defected output port is replaced by one of the
redundant output ports. The switching state of the output relay switch must be changed to
reflect the new configuration. The OBC may have to update the translation tables at each
input port if the routing tag is appended at the FPS to reflect the new configuration. If the
routing tag is added at the terminals, then the OBC has to send special instructions to all
the terminals to update the translation tables.

3.5.3 Input Port Redundancy

After the output ports have been tested to be error free, the input ports are tested. Two
ways of implementing fault tolerance at the input ports are identified.

3.5.3.1 1-for-N Redundancy

The switch size used is (N+3) x (N+3). input port N is provided as a redundancy input
port. An N x 1 multiplexer is used to connect N input lines to the extra input port N. The
configuration of 1-for-N redundancy for output port is shown in Figure 3-19. When an input
port is detected in fault by the OBC, a fault-reconfiguration algorithm will replace the faulty
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input port with the input port N such that the switch operation can be continued with
minimal disruption.
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Figure 3-20: m-for-N Redundancy Configuration for Output Port
3.5.3.1.1 Fault Detection by OBC

The fault detection procedure is to check the health status of each input port. Either on-
line testing or off-line testing can be adopted. Testing should be performed when the traffic
loading is light. For off-line testing, the input port N can replace the input port under test
temporary and isolate input port under test completely.

A loop-back method is used to check the input ports (and the output ports). Without
loss of generality, let input port 0 be the input port under test. The OBC generates the test
packets and send these packets to output port 0. When output port O receives the test
packets, output port O relays these packets to the corresponding input port 0. Input port O
sends packets back to OBC through the multiplexer.

When the test packets arrive to OBC, a comparison circuit is used to compare the
contents of the packets with the pattems stored in the OBC. If faults are detected, the fault-
tolerance operation enters the fault diagnosis stage. If no faults are detected, the OBC test
the next input port (input port 1) following the same procedure. ’
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The redundant input port N should be checked by the OBC constantly to make sure it is
at the good state.

3.5.3.1.2 Fault Diagnosis by OBC

When faults are detected, fault diagnosis is required to pin point the faulty component.
If faults are existed when the input port O is tested, the faults may occur at the switching
path (between input N+1 and output 0), the output port 0 and the input port 0. Since the
output ports are tested before the input ports, the output ports can be assumed to be fault
free. The OBC sends the test patterns to output port 0 through input N+2. If faults still
exist, the faults must occur at input port O.

3.5.3.1.3 Fault Recovery and Fault Reconfiguration by OBC

When faults are found at the input port, the OBC has to determine whether the faults
can be recovered. For example, a memory error can be recovered by instructing the
read/write operation to skip the erromeous locations. If the faults are not recoverable, the
input port will be isolated and be put off line. The multiplexer is set in such a way that input
line O uses input port N for storage.

3.5.3.2 m-for-N Redundancy

There is a N x (N+m) input refay switch in front of the N+2+m input ports. The switch
size is (N+2+m) x (N+2+m). There are m redundant input ports. The redundancy
configuration is shown in Figure 3-20. When faults are detected in one of the N input ports,
the relay switch will bypass the defected input port and switch the traffic into another input
port. The OBC may have to download the translation table to the new adopted input port if
the routing tag is appended at the OBC. The fault detection and fault diagnosis can apply
the same procedure mentioned above.

3.5.4 Switching Fabric Path Redundancy

The switching fabric redundancy can be achieved by increasing the number of paths in
the switching fabric.

3.5.4.1 Switching Fabric 1-for-N Redundancy

3.5.4.1.1 Fault Detection by OBC

There are N2 crosspoints in the crossbar switch. Each of these crosspoints has to be
tested. The OBC sends test packets to output port 0 first. Output port O relays the test
packets to the corresponding input port 0. Input port 0 sends these test packets to different
output ports sequentially. When an output port receives the test packets, the output port
sends the test packets through the muitiplexer to the OBC. The OBC examines the test
packet contents for error detection. This procedure is repeated for every input-output pair.
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—3.5.4.1.2 Fauit Diagnosis by OBC

The fault-detection procedure mentioned above has achieved fault diagnosis naturally.
When errors are found in the test packet, the faulty switching path is the input-output pair
under test. ‘ :

3.5.4.1.3 Fault Reconfiguration by OBC

After the faulty path (crosspoint) has been identified, the faulty path is isolated. Assume
the switching path between input 0 and output 0 is faulty. The packets, destined to output
port O, at input port O are routed to output port N using the redundant switching path. Since
output port N is not the final destination, the output port N sends these packets to output
line O by enabling the associated multiplexer.

3.5.4.2 Switching Fabric 1-for-1 Redundancy

If the switch chip does not have any redundancy, a tailure of the power pin or the
ground pin causes a failure of the whole system. A 1-for-1 redundancy for the switch chip
is required. These two switch chips may receive power from two different power sources.
The other option is that to design a chip with spare power pins and spare ground pins. The
power pins may receive power from different power sources. By providing both switching
fabric redundancy and switching fabric path redundancy, the fault-tolerant operation
becomes very robust. Assume the switching path between input 0 and output 0 of the
switching fabric 1 is faulty. Then the OBC can instruct input port 0 to send packets,
destined to output port 0, via switching fabric 2.

3.5.5 Fault Detection, Fault Diagnosis, and Fault
Reconfiguration by Ground Terminals

When OBC fails to perform fault tolerant operation, it is desirable that the ground
terminals can take over the operation. It is required that each beam has a terminal to
participate the testing. Let the terminal located in beam i denoted as terminal i, where 0 < i
< N-1. Since any two disjoint paths in the FPS can identify a point (a module), a pair of
terminals are required to test one module. The module can be input port, switching path,
or output port. Let output port 0 be the module under test. Terminal O sends the test packet
to itself. If faults occur, either input port 0, the switching path between input 0 and output O,
or output port O is faulty. Terminal 1 sends the test packet to terminal 0. If faults still exist,
output port 0 is identified to be faulty. If faults do net exist, either input port 0 or the
switching path between input 0 and output 0 is faulty. Terminal O sends the test packet to
Terminal 1. If faults stili exist, input port 0 is identified to be faulty. If faults do not exist, the
switching path between input 0 and output 0 is identified to be faulty. The same procedure
is followed to test the other modules. The fault reconfiguration procedure is executed
when commands from the ground terminal are received. The disadvantage of testing by
ground terminals is that the test can not be executed in real time, since the received test
data from different terminals must be processed at a central location.
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3.5.6 Output Reservation Module Redundancy

A fault tolerant centralized input ring reservation scheme is vital to the FPS.Ifa
(unrecoverable) failure in the centralized input ring reservation module occurs, the whole
FPS is unoperational. The input ring must have a 1-to-1 redundancy. As shown in Figure
3-21, there are two reservation modules; one at the top of the input ports and one at the
bottom. These two reservation modules are connected by two backplane paths (buses).
Since the path passes through every input port, a failure of the input port disconnects the
path. The path through the input port should have a bypass mechanism such that a faulty
input port can be isolated from the path. After the top module sends the tokens through the
input ports, the bottom module processes the tokens. If an erfroris detected in the tokens, a
failure of the path is detected. The OBC should perform fault diagnosis and pinpoint the
faulty segment. If the fault can not be recovered, the bottom module will resume the
operation and the top module checks the status of tokens. The bus used to connect the
input ports can be designed to have spare fines. If one line fails, the spare line can be put
in operation. '

Output Reservation
Module

A

Input O

Token Stream
Token Stream

input N-1

A |

Output Reservation
Module

Figure 3-21: Redundancy Configuration for the Output Reservation Module

3.5.7 On-Board Control Memory Coding for Soft Failures

There are four effective ways of providing fault-tolerance for the control memory and
data memory [3-16]. The first way is to use a error detection code (even/odd parity check)
along with the information. The information is encoded before being stored in the memory.
When the information is read out from the memory, if error is detected, a diagnosis
procedure is invoked and that particular memory location is examined. If faults are found
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in the location, the OBC will send out commands to skip the faulty location. The second
way is also to use only a error-detection code. After memory fault-diagnosis procedure is
applied, the faulty memory location can be identified. Hardware correction is possible
using a register in the decoder. The bits in the faulty positions can be corrected using bit-
operation. The third way is to use an error correction code along with the information. The
larger the correction capability, the more faults can be tolerated; however, more redundant
‘bits are used, and more complexity and more delay are required for the decoder. The
fourth way is to use the majority voting technique.

The distribution control unit (DCU) in Intelsat VI uses three identical (control) memory
modules. The DCU is responsible for setting up the connection states of the microwave
switch matrix. Switch configurations are stored in the DCU memory. One memory is on-
line while the other two are used for stand-by and off-line function. The off-line memory
module has the same data contents as the on-line memory module. Once failures are
found from the on-line module, fast switchover can be made. The data are encoded from
the ground station using the' Hamming code before it is stored in the memory. When the
data is read out from the memory, forward error correction is applied to the data. The
chosen Hamming code has one-bit error correction capability. The memory contents are
refreshed immediately after they are read out. That is to say after the data is read out and
decoded, the data is re-encoded and stored at the same memory location. This is to
prevent accumulation of errors in the same (control) memory location.

The off-line memory can be read out and sent to the ground station for error
verification/correction to make sure that the memory module is always in the good state.

The control memory in Reference 3-14 is protected using the combination of error
correction code and majority voting.

In addition to providing protection for the memory, the read/write logic for the memory
must be doubled.
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High-level functional requirements for each module of the fast packet switch are
described below.

4.1 Input Port

The input port accepts the demodulated satellite virtual packets (SVPs). It performs
synchronization to identify the packet boundary. The SVP is stored in the proper location
of the proper queue based on the SVP traffic type and loss priority. Output contention
resolution is performed for every packet in the queue(s). After output contention is
resolved, the SVP is then ready to be sent to the switching fabric.

The input port high-level functional block diagram is shown in Figure 4-1. The
functions performed by each block are presented below.

The packet synchronization/header error control block has two major functions. First, it
accepts the demodulated SVP bit stream and performs synchronization to identify the
packet boundary. Second, it performs forward error correction for the SVP header. If
errors are found and they are not correctable, the erromeous packets are dropped. If no
errors are found, the SVP is ready to be stored in the buffer. If errors are found and they
are correctable, the errors will be corrected and then the packet is ready to be stored in the
buffer. Idie SVPs should be discarded. Idle SVPs can be identified by examining the VCN
field in the SVP header. (For example, the first bit in the VCN field can be designated as
an activation/inactivation bit.)

The traffic monitoring/congestion control biock measures the switch loading (such as
arrival rate, queue length, or link utilization). The measurement results are used by the
OBC at regular intervals. When the switch is congested, the low-priority packets are
dropped before the high-priority packets. (In real operation, the traffic monitoring device
should also count the number of lost packets and the number of erromeous packets.)

The buffer block with its associated controller inserts the arrival SVP to the proper
location of the proper queue based on the payload type and the loss priority.

The output port reservation with priority control block performs output contention
resolution for every SVP in the buffer. High-priority packets win the output contention
resoiution when they are contended with low-priority packets. After the output port for a
SVP has been reserved, the SVP is ready to be transferred to the switching fabric.

To facilitate testing, the input port is able to receive (test) packets from the
corresponding output port. (For example, input port 0 can receive packets from output port
0.) The (test) packets are treated as a regular packet.

(Note that the routing tag of the SVP is added at the ground terminal, not at the input
port.)

The functions of the transmission interface and switching fabric interface will be
discussed in the "High Level Design" task.
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Section 4 |
Switching Subsystem
Functional Requirements

This section specifies high-level functional requirements for the on-board baseband
switching subsystem which will be implemented in the subsequent tasks. The functional
requirements are based on the analyses studied in Section 3 “Design Considerations for
Switching Subsystem". The performance requirements are highly dependent on the
services the switch provides. A general guideline for performance requirements is
provided at the end of this section for delay-sensitive circuit traffic and loss-sensitive data
traffic.

An on-board fast packet switch (FPS) consists of input ports, switching fabric, output
ports, output port reservation module, and on-board controller (OBC). The high-level
functional block diagram of the FPS is shown in Figure 4-1.

Output Port
Reservation Module

—J Tnput Port }—— utput Port
11

Input Port Output Port

—Jf Input Port }— ' Output Port

l —
— lnpult Port |— Seli-Routing Output Port
—J Tnput Port_}——  Switching Fabric }—] Output Port }——

——{ Input Port_}——
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——1 Input Port }—— ‘ Output Port
—7 Tnput Port }—— I Output Port ——
On-Board
Controller

Figure 4-1: High-Level Functional Block Diagram of FPS Modules
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Figure 4-2: High-Level Functional Block Diagram of Input Port

4.2 Switching Fabric

The switching fabric accepts the SVPs from different input ports and routes these
packets to the destinations solely based on the routing tag in the SVP header.

The switching fabric performs the following high level functions:

« self-routing: The switch fabric routes the packets solely based on their
routing tags.

« multicast: The switch fabric routes a muiticast packet to multiple destinations
based on the packet's multicast routing tag.

« nonblocking: When the arrival packets have distinct routing tags, the switch
fabric is able to route these packets to the destinations without any blocking.

» packet sequence preserving: The switching fabric will not transmit packets
with the same VCN out of sequence.

(Note the chosen commercial crossbar switch does not have the self-routing capability.
A special controller must be designed to control the crossbar switch such that the crossbar
switch performs as a self-routing switch. The implementation of the special controller is
described in the "High Level Design" task.)

C—17
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4.3 Output Port

The output port accepts the SVPs from the switching fabric and performs speed and/or
format conversion for downiink transmission. The high-level functional block diagram for
an output port is shown in Figure 4-3. The functions of each block are addressed as
follows.

The traffic monitoring block is to measure the switch loading (such as mean utilization).
The switch loading results are used by the OBC at regular intervals.

The speed/format conversion block uses a FIFO to convert the speed and/or format
suitable for downlink transmission. (One typical example is to convert uplink TDMA format
into downlink TDM format.) To maintain downlink synchronization, when there is no packet
to transmit, idle packets must be generated and inserted into the downlink bit stream.

The routing tag of the packet may be deleted at the output port.

To facilitate testing, the output port is able to relay the (test) packet to the corresponding
input port. The test packet is also inserted into the downlink bit stream.

The functions of the transmission interface and switching fabric interface will be
discussed in the "High Level Design" task.

Speed/Format Conversion
TDM
—a}|Switch Fabri FIFO Stream _¢| Transmission} .
interface i interface
Traffic Monitoring +
TDM

Controller Reference Burst &

Preamble Generato:

Figure 4-3: High-Level Functional Block Diagram of Output Port

-

4.4 OBC

The OBC accepts control and test packets from the input ports via the switching fabric.
The OBC also accepts test packets via internal interconnection mechanisms from different
ports. The OBC sends control and test packets to different output ports via the switching
fabric. The OBC handies the following algorithms: congestion control and fault-tolerant
operation. The OBC has knowledge about the switching network topology, the
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functionalities of different modules (basic and redundant modules), and the
interconnection mechanisms among different modules. The OBC monitors and collects
switch loading at regular intervals. The switch loading is an input argument to the
congestion control algorithm. An output of the congestion control algorithm is the amount
of traffic increase or traffic reduction for the ground terminals. The OBC generates control
SVPs containing traffic reduction/increase messages at regular intervals and send these
packets to the ground terminals. The OBC sends the test SVPs to different ports via
switching fabric when the traffic loading is light. When the test SVPs are received from the
ports under test, the OBC executes the fault detection procedure. If faults are detected, the
fault-tolerant operation enters the fault diagnosis stage. After the faulty module is
pinpointed, the OBC replaces the faulty module with a redundant module by executing the
fault reconfiguration procedure. The OBC may send control SVPs to terminals to notify the
outcome of the switch reconfiguration. '

(In real operation, the OBC may handle performance monitoring and traffic
management functions. Storing of measurement data may be necessary such that the
data can be sent back to the ground station for further processing. Traffic management
functions include a) capacity allocation, where virtual path (VP) connections are semi-
permanently allocated and virtual channe! (VC) connections are on-demand allocation, b)
call setup and release, and c) connectionless services such as switched multimegabit data
service (SMDS) and connectionless broadband data service (CBDS).)

After the features have been demonstrated, the switch performance must be measured.
Although there is no final recommendation on the switch performance, general guidelines
were provided in Reference 4-1. The switch throughput should be above 90%. The FPS
will be used to provide services for both delay-sensitive circuit traffic and loss-sensitive
data traffic. The PLR and switching delay jitter should be kept small. The PLR should be
between 10-9 and 10-10. The switching delay (jitter) should be less than 0.4 ms.
Interactive speech service demands the shortest end-to-end delay (30 ms). Clearly 30 ms
end-to-end delay requirement is only for terrestrial network and is not applicable for
satellite network. Data and compressed video traffic demands the lowest end-to-end
packet loss ratio (10°19). Another set of packet delay variation was recommended in
Reference 4-2. The packet delay variation for voice and video is less than 6 ms and for
data is less than 600 ms.
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Section 5
Testbed Configuration

A block diagram of the fast packet switch testbed along with development support
modules is shown in Figure 5-1. The key features of the testbed include switch and
interface port operation at 155.52 Mbit/s, the use of commercial VLS| switching devices,
two pairs of input and output processors for satellite virtual packet handling, congestion
control based on priorities, and flexibility to accommodate additional features as needed in
the future. As a part of the architecture definition task, a preliminary design of the testbed is
presented in this section. The proposed design will be refined in the following high-level
design task to finalize the overall testbed configuration.

PACKET PACKET
GENERATOR| RECEIVER

ON-BOARD

TESTBED
CONTROLLER

Figure 5-1: Fast Packet Switch Testbed Block Diagram

Figure 5-2 depicts a equipment configuration of the testbed and development support
modules that will be used in the fabrication and testing of the switch.

The testbed will consist of a single chassis containing two input/output ports, a switch
module, and a single board testbed control central processor unit (CPU). The boards
located in the enclosure will have a 6U x 280 mm form factor. Depending upon the final
results of the high level design, the switch input and output ports may consist of one or two
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boards, the switch module will be a single board and the Control CPU will be a commercial
SBE VLANE 68020 microprocessor. Thus a total of three to five wire wrap modules will be
fabricated. The modules will contain ECL and TTL technologies with all ECL technology
being restricted to the input and outputs of the port line cards, the switch interconnect and
the switch real time control. The TTL technology used will make maximum use of high
density programmable logic devices.
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Figure 5-2: Testbed and Development Support Module

The testbed control processor will communicate with the various other modules via the
P1 connector of the VME interface. All modules except the testbed CPU will act as bus
slaves and their resources will be accessed as memory mapped |O. The following
subsections describe the functional operation of the various modules and describe some
of the capabilities being considered for fabrication to improve the switch testbed.
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As shown in Figure 5.2 the development of a traffic generator source and a traffic
generator sink module are also being considered as enhancements to the switch testbed.
These modules would allow greater control over the possible traffic sources and sinks that
may be used to verify the testbed operation and to measure its performance. This could
- also result in a better mechanism to test and measure different algorithms that may be
used to improve the switch performance. Capabilities of such modules are described in
the packet generator and sink subsections.

5.1 Packet Generator/Sink

Depending upon the final implementation the generation of traffic to test the switch
operation and performance may be fairly straight forward or may require the development
- of some special assemblies. For the present system considered the tests are broken down
into those functions that are necessary for the system operational verification and those
that may be used to gain measures of the systems overall performance under various test
scenarios. Mechanisms of generating and checking traffic flowing through the switch for
these two classes of tests are described in the following paragraphs.

The operation of the test bed switch may be tested in a fairly simplistic manner by the
use of pattern generators and logic analyzers. These tests will involve programming a
canned pattern, corresponding to one or more satellite virtual packets (SVPs), into the
pattern generator. These pattems may then be transmitted to one or more of the input
ports. The logic analyzer may then be used to capture and scan the resulting data
delivered from the output port or from any possible input port loopback connections. These
tests are quite static and repetitive in nature and may be used in the system even if the
data delivered at the output module undergoes some form of data conversion in passing
through the switch (eg FEC encoding,CRC generation, different uplink and downlink rates
and/or formats).

For those cases where the uplink traffic is of the same format as the down link traffic,
certain test equipments (such as Packet BERT-200 from Microwave Logic) may be used to
test the systems operation. It is also possibie to program this equipment from a remote
computer system via its GPIB or its RS432 interface to yield a more exhaustive set of tests.
For those cases where the down link traffic is different either in format, rate or in various
fields (possible by the insertion of error check sums or FEC code pattems) these test
equipments may not be adequately suited for testing the switches operation.

For operational and systems performance testing more exhaustive exercising of the
testbed may be achieved by developing some traffic generator and sink modules that
could be used in conjunction with the control processor (and possibly an external
computer like a sun workstation) for setting up various traffic generation and testing
scenarios The basic functions required of such a traffic generator are to generate the the
require uplink frame formats, to generate possible switch routing paths and to generate the
data the will be contained in the SVPs. A block diagram of such a traffic generator and sink
is shown in Figure 5.3.

COMSAT Laboratories « 5-3



The basic premise of the traffic generation/sink module is to allow a user to set up
certain test configurations for the delivery of packet to the switch and the reception of
packet from the switch. The packet is transmitted from and stored in (the transmit and
receive) dual port RAMs located on the module. These RAMs could be implemented as
ping-pong memories allowing one configuration to be tested while a new one is being
loaded. The basic switch over of the active RAM to the standby RAM could be under the
control of the testbed CPU, with the actual switch over occurring only on SVP boundaries.
Synchronization between the traffic generator/sink module and the testbed control CPU
could be via hardware interrupts and or via some form of polling mechanism. For packet
delivery to switch there are three possible fields that must be accounted for.

The first field is the uplink synchronization field. Typically this field may contain some
form of frame marker. Additional information may be required to accommodate specific
uplink characteristics like the phase ambiguity resolution associated with QPSK
modulation. This may be required for those cases where the ambiguity has not been
removed by the demodulator. The uplink synchronization field is usually fairly small and
remains unchanged for all frames. It may also be used for establishing appropriate SVP
delineation boundaries. As mentioned in the previous sections an altemative mechanism
could use the the SVP header and some form of forward error check sequence (as in ATM
headers) for packet delineation. Here too the functions like demodulator phase ambiguity
removal must be addressed. This may increase the overall synchronization time for the
input module or may increase the amount of synchronization hardware required. For the
present implementation it is expected that packet delineation will be performed by a
specific frame sequence added to the front of each SVP.

The second field that must be accommodated for is the SVP header. This field will
contain the various overheads associated with the SVP. In particular this field will contain
the physical routing tag needed to route the SVP through the switch fabric. This field may
also contain a FEC code necessary to protect the SVP header. These codes may be
precalculated or additional hardware may be added to generator/sink modules to generate
or check them on the fly. The final field that must be accommodated for is the actual SVP
payload.

A possible implementation of the traffic generator/sync module would permit each of
these three fields to be controlled separately, aliowing the overall processing required by
the testbed control processor to be minimized for different types of test and allowing the
dual ported RAM to be used most effectively. A couple of data memory maps that could be
used in such an implementation is also shown in Figure 5.3 The first map would allocate a
fixed area (say 16 words or iess) to the uplink synchronization field. This field will be
transmitted every frame. The second area of RAM could be used to program the SVP
payload. For the case shown this payload would be the same for each SVP. Altermnatives
could allow the payliad to be a PSR or a simple cyclic counter. The third area of the RAM
could then be allocated to various routing tags and SVP headers. This would allow a large
number of packets to be generated each going to a different possible output port. An
altemative mapping also shown would allow the generation of a smaller number of SVPs
each with a different SVP payload.
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An additional capability for the traffic generator could allow any or all of the various
fields to be generated from an external source like a bit error rate test set with the sole
restriction being that the external source must be capable of operating under the gated
control of the traffic generator. This gated control may be accomplished by controlling the
clock to the extenal source or by suppiying a clear to send signal to the device.

Packet reception of the sink module would involve the storage of packet into the sink
dual port RAM or the sending of one or more of the above mentioned fields to an extemnal
device. (like the receive side of a bit error rate test set.)

The proposed module would interface to the testbed control processor via the VME
interface bus. This control processor could have its various test patterns generated via a
console connected to the RS-232 port or be downloaded from a workstation via the RS-
232 or the the ethemet port. When the control processor receives the configuration data it
then proceeds to write it into the transmit dual ported RAM located on the source module
and to setup the particular test. It can then activate either side of the transmit or receive
ping-pong memory. Further enhancements may include mechanisms of specifying how
many times the ping pong buffers should be transmitted or received prior to informing the
control processor the test is completed or to switching to the altemate memory.

5.2 Input/Output Port

The input/output port will be responsible for accepting incoming data, establishing
proper uplink synchronization, demultiplexing the data, and preparing it for delivery to the
switch module for routing to the appropriate output module. At the output module, the data
is accepted and possibly reformatted for delivery to the appropriate down link.

A block diagram of the input/output port module is shown in Figure 5.4. Modifications
of the design being considered from that of the initial proposal are to allow the various
input and output ports to transfer data at rates of about 155.52 Mbit/s and to use a
commercially available high speed conventional crossbar switch chip in the switching
fabric. To accommodate these modifications and to minimize their effects the proposed
design tries to restrict the number of areas requiring high speed technology to a minimum
and further requires that all processing of various data fields be done on byte wide
boundaries. Also shown in Figure 5.4 in the lightly shaded areas are two additional
functions that may be required for on-board switching but that have not been included to
date in the baseband switch testbed. These functions involve uplink and down link Reed
Solomon encoding and down link data interieaving to randomize the effects of any burst of
errors on the down link encoding. The addition of these functions could be included at a
later time.

As shown in Figure 5.4, data is transferred to and from the port line card over two
differential serial lines at rates of 155.52 Mbits/sec. it should be noted that higher data
rates may be required if the uplink data were encoded prior to transmission. The dark
portions of the figure indicate those areas of the design that must be implemented in
emitter coupled logic (ECL). Upon reception of the ECL data the input portion of the
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module quickly converts the incoming data into 8 bit bytes. This data is then delivered to
the SVP Sync and Dmux Timing logic (SSDT) to establish frame/byte synchronization.

This frame/byte synchronization is tied to the overall acquisition algorithm implemented
by the SSDT. The SSDT scans all bytes of data to try and identify the first byte of a
multiple byte frame pattern. If this pattern is not detected within a certain number of frames
the SSDT causes the uplink converter logic to execute a bit strobe clock inhibit into the
serial to parallel converter. This causes a single bit rotation in the succeeding 8 bit bytes of
data generated. The SSDT then proceeds to scan another set of frames for the appropriate
byte pattern. Upon detection, the succeeding bytes of data are tested to see if they
correspond to the multi-byte pattern expected. If they do not the inhibit signal is
regenerated and the logic again searches for the first byte of the frame pattem. This
search continues until the whole frame pattem is detected. With the pattem detected the
SSDT then proceeds to reload its frame counter and scan "N" of the next succeeding
frames to insure that the frame marker is in the expected location. If the marker is not there
for any one of "N" frames the SSDT reverts to the execution of inhibiting the clock to the
serial to parallel converter. If the frame markers are detected for "N" frames in a row then
the SSDT declares that line synchronization has been achieved. With synchronization
achieved the SSDT continues to scan succeeding frames for the frame marker.
Synchronization is declared loss and the above cycle repeats itself if “M" frames are
detected in a row with an incorrect frame marker. The counter values of the initial frame
byte search, the acquisition frame count "N" and the synchronization frame loss "M" may be
programmable up to a certain limit (possibly 16).

With synchronization achieved the SSDT may then proceeds to demuitiplex the
incoming SVPs and deliver them to the switch input port logic (SIPL). The SIPL accepts
byte data from the SSDT, processes the necessary header information and stores the SVP
in the appropriate memory locations of a dual ported memory that is used as an input
queue. The header processing being considered for this implementation involves service
type (circuit or packet SVP) and packet priority (two possible priorities) for single-size
SVPs. SVPs with different service types and/or priorities will be routed to different queues
each with their own specific queue scan depth. The implementing effects of multi-size
SVPs and of header FEC protection/correction will also be reviewed. The queue
implemented will be capabile of storing up to 128 SVPs. -Attempts will be made to
modularize the queue management hardware such that alternate memory managements
mechanisms (for example preallocated areas per service type/packet priority or some form
of link list implementation) may be tried at a future date. The present implementation being
considered also assumes that each SVP delivered to the SIPL contains a physical routing
tag that is used to route the packet through the switch fabric. This tag identifies which
output port(s) the packet is to be delivered to.

In addition to storing the data in memory the SIPL must perform two additional
functions. These are switch output port contention resolution and delivery of packet to the
switch module itself. The first function is implemented to allow the various output modules
to reserve a connection to one or more output ports. The basic operation of the contention
control follows a similar methodology as identified in the SCAR | final report with a number
of contention frames being transferred between the various input modules over the
contention ring each SVP timeslot. This number will correspond to the total input queue
scan depth selected (scan depth of all queues).
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Since the present system design will accommodate different service types and
priorities and will use of a commercial crossbar switch IC for module interconnection, the
format of the contention control messages flowing through the input port will be modified.
The crossbar switch ICs uses a centralized control port to establish switch connectivity and
is not self routing on each of its input ports. As such the contention control format must be
modified so that at the end of the contention cycle the centralized controller may use the
results of the contention algorithm to setup the switch connectivity for the next SVPs. This
requires the input ports specify their address in the appropriate desired output port
reservation field(s). In addition for the input ports to properly reserve a connection for a
SVP of a particular type/priority the format may require individual input ports to specify the
SVP priority and service type. This information will be used by the various input modules
to establish switch connectivity. This is in contrast to the format used in the SCAR | report
where a single bit could be used for each switch connection point. As the switch control
port is doubly buffered the contention control algorithm will be establishing switch
connectivity for one SVP in advance.

With the input port contention resolved for the present SCP time slot, the SIPL then
proceeds to transfer packet through the switch fabric to the reserved output port . Packet
delivery to the switch module is fairly straight forward. This transmission is synchronized
by the switch module itself via the "NEWSVP" and "SVPHEADER" interface signals. Upon
activation of these signals the SIPL proceeds to transmit its data to the parallel to serial
ECL conversion logic used to feed the switch fabric. The 8 bit data delivered and is then
transmitted over a serial differential line to the switch module.

Packet reception from the switch module is also under the synchronization of the switch
module and is also via a serial differential ECL drivers. Once again the NEWSVC and
SVCHEADER signals are used to properly window the data as it is delivered to the output
port. These signals are also used to establish proper byte alignment at each of the various
output modules. It is expected that the switch output port logic will be very similar if not
identical to the switch SIPL with the exception that the contention control port will not be
utilized. Packet received by the switch output port may be stored in a dual ported RAM
prior to delivery to the Mux & Timing Control (MTCL) logic. This data storage is only
necessary if the switch fabric operates faster than the output port line rate or if the output
port may be expected to service a number of down link carriers or operate in a spot beam
environment. For these cases the SVP header will again be processed to route the
incoming data to the correct queue. Hardware counts may aiso be kept as to number of
cells in a queue or to the cells loss due to lack of storage space for data of a specific
service type or priority. These counts may be read by the control processor.

The MTCL is responsible for reformatting the output data prior to transmission. If the
uplink synchronization code is not striped off at the switch input module and is the same as
that used in the down link this block of logic may quite simple in that it need only control the
parallel to serial conversion to the output port line side drivers.
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5.3 Switch Module

A block diagram of the switch module is shown in Figure 5.5. The switch module
utilizes a commercial crossbar switch IC with additional control logic that can allow the
various input modules to utilize the switch in a self routing fashion. The crossbar switch
itself will be a single chip device implemented GaAs or Bipolar technology. All interfaces
to the chip will be ECL compatible. The crossbar switch will be capable of accepting serial
data at rates of 155.52 Mbit/s. The overall contro! of the switch connectivity will be via TTL
logic which interfaces the contention control logic to the switch control logic. As such the
switch module acts as the starting element on the token ring. The logic acts as a simple
repeater as the various modules contend for their desired output connectivity and at the
end of the contention cycle the switch logic extracts the resulting connectivity information
and uses it to configure the crossbar switch. At the appropriate time the control logic
activates the specified connectivity map. This map is activated such that the connectivity
for all input modules switch at one time. An additional function of the switch control logic is
to generate the appropriate synchronization signals for the switch input and output ports so
that the data to and from the switch is properly bit and byte aligned.

As shown in the diagram the switch control logic would also have an interface to the
testbed control processor. This interface may be used to configure any local variables or
as a possible bypass mechanism to the contention control logic to allow the switch
connectivity to be programmed in a static manner. Such capabilities may be useful debug
aids.

5.4 Control Processor

The control processor used in the switch test bed will be commercial 68020 SBE
VLANE microprocessor. The Processor will have RS-232 and ethernet connection
capabilities. The processor will have a system console process which will allow the
operator to perform various basic functions over the VME bus. These functions include
reading and writing the various memory devices and memory mapped IO control registers.
For the case where traffic generator and sink modules are developed the control processor
can also be used to configure the traffic generator and monitor the traffic sink operations.
For certain cases this data may be loaded over the ethemet port and may be activated via
the ethemet port.

5.5 Implementation Approach

The present implementation approach will use the same methodology as outlined in
the SCAR !l proposal with the exception that the port interface data rates will be much
higher (150 M to 200 M from 20 to 30M) and that the switch implementation will use
commercially available crossbar switches whose output connectivity may be controlied by
a centralized contention control algorithm that is programmed by the various input modules
themselves.
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To accommodate these modifications and to minimize their effects the proposed design
tries to restrict the number of areas requiring high speed technology to a minimum and
further requires that all processing of various data fields be done on byte wide boundaries.
It is estimated that the ECL interfaces on the input module will require the use of about 40
small scale and medium scale ECL integrated circuits. In addition the switch module itself
will require about 20 extra ICs to act as ECL drivers/receivers and ECL/TTL converters.
The overall designs required however are relatively straight forward though extra care will
have to be made in the board layout and fabrication.

The remaining logic of the switch testbed will make maximum use of high density TTL
compatible programmable logic like the ALTERA EPM 5000 and 7000 series chips which
have system clock rates of about 40 to 50 MHz. Interfaces to and from these chips will
accommodate byte or multi-byte wide data processing. A standard commercial enclosure
will be used to house the testbed and commercially available boards will be use for
module interconnect.

Where possible the various parameters used to define the SVP format, the acquisition
and synchronization algorithm and the traffic source sink capabilities will be made
programmable via the testbed control processor. By these mechanisms the testbed can be
made more flexible and can be used to study a wider variety of operational characteristics.
In addition by the use of modular design techniques attempts will be made to allow the
hardware and and software developed for the testbed to be readily expanded and or
enhanced to allow for functions not presently included in the design or possibly not yet
specified. These capabilities may include additional hardware software hooks for the
testing of altemate contention control or congestion control algorithms, queue
management algorithms or for the incorporation of different type of redundancy
development.
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Section 6
Preliminary Test Plans

This section presents the system-level test plans for the on-board FPS. These test
plans are only for the breadboard under development. In real system, more extensive
testing is required. The basic functions of the FPS should be tested, verified, and
demonstrated. After the switch operations have been tested to be satisfactory, the next
step is to measure and analyze the switch performance. In general testing the FPS should
follow the sequence: 1) module acquisition, 2) synchronization, 3) packet queueing, 4)
token ring generation, 5) output port reservation, 6) packet transfer, 7) packet reception, 8)
packet storage, 9) packet formatting, and 10) packet end to end performance :
measurements. Some of the preliminary test procedures are discussed at the end of this _
section. Detailed test procedures will be presented in the "Test Plan" task.

6.1 Input Port
The basic functions of the input port, which should be tested, contain:
* synchronization

The input port should demonstrate the capability of identifying packets' boundary from
the demodulated bit stream.

* packet queueing

The arrival packet must be inserted to the right location of the right queue based on the
payload type and the loss priority.

* output contention resolution

The output contention resolution module must resolve output contention among
different packets at different input ports. The input port should demonstrate the capability
of reserving a subset of the destinations of a multicast packet, i.e., the input port should
have the call splitting capability. The fairness of output contention resolution among
different input ports must be achieved. Loss of tokens must be detected.

* priority control for integrated operation and guaranteed QOSs

Priority control is used in two areas in a fast packet switch: multiplexing sequence and
congestion control. Priority is used to meet different packet loss ratio requirements and
switch delay requirements. Circuit switched traffic is delay sensitive and packet switched
traffic is delay insensitive. The circuit switched traffic has a higher priority than the packet
switched traffic. Within the packet switched traffic, there are two more subclasses: loss
sensitive and regular. A high-priority packet is guaranteed to win the output contention
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resolution when it is contended with other low-priority packets. Also the low-priority
packets are dropped before the high-priority packets when the switch is congested.

« header error control (option)

To ensure the arrival packets are error-free, the HEC function should be performed at
the input port. By performing HEC, the bandwidth efficiency is increased since the
erromeous packets are discarded at the very earliest stage.

. trafﬁc monitoring

Traffic monitoring is a necessary procedure to detect congestion. The input pbrt should
provide the switch loading (such as armival rate, queue length, or output utilization) to the
congestion control algorithm. More discussion on congestion control is provided in the
"Critical Design and Simulation” task.

« idle SVP discarding

idie SVP should be discarded. Saving of the bandwidth can be used to transmit the
control SVPs originated from OBC.

6.2 Switching Fabric

The basic functions of the switching fabric, which should be tested, contain:

« self-routing and packet transfer

The FPS should route packets to the destination solely based on packets' routing tags.

» connection-oriented switching

The FPS can not transmit packets with the same virtual channel number (VCN) out of
sequence. In other words, the transmission sequence of the arrival packets have to be
preserved.

« multicast/broadcast

A muliicast FPS should route a multicast packet from one input port to multiple output |

ports. The FPS must demonstrate the capability of duplicating a muiticast packet to
multiple copies and send these copies to the destinations.

6.3 Output Port
The basic functions of the output port, which should be tested, contain:

« traffic monitoring
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Traffic monitoring is a necessary procedure to detect congestion. The input port should
provide the switch loading (such as output utilization) to the congestion control algorithm.
More discussion on congestion control is provided in the task "Critical Design and
Simuiation". -

* speed/format conversion

Since the downlink and the uplink may use different speed and/or transmission format,
the speed/format conversion function has to be tested.

» routing tag removal (option)

Since the routing tag is overhead, the routing tag may be removed from the packet
header at the output port. The saving of bandwidth can be used to transmit the control
packets originated from the OBC.

¢ idle SVP insertion

To maintain the downlink synchronization, idle SVPs are inserted into the downlink
TDM stream when there is no traffic to be sent.

6.4 OBC
The basic functions of the OBC, which should be tested, contain:
» fault tolerant operation

The fault tolerant operation consists of fault detection, fault diagnosis, fault isolation,
and fault reconfiguration. To test the fault tolerant operation, for example, an output port
can be put in a faulty state. If the fault tolerant operation is successful, the switch should
reroute the incoming packets (destined to the faulty output port) to a redundant output port.

* congestion control

The OBC receives the switch loading information from the traffic monitoring devices (at
the input ports and/or the output ports). The OBC performs congestion control algorithm.
The OBC sends out congestion control messages to the ground terminals at regular
intervals.

After all the characteristics and features mentioned above have been tested, the
performance of the switch should be measured and analyzed. The switch itself can be
characterized by the throughput and switch capacity. The connection can be characterized
by bit error rate (BER), instaneous and long term packet loss ratio, packet (mis)insertion
ratio, packet transfer delay, and packet delay jitter. Integration of circuit switched traffic and
packet switched traffic can be tested by measuring the packet delay jitter of the circuit
switched packet. The effectiveness of the congestion control algorithm can be tested by
measuring the on-board switch PLR when the switch is overioaded.
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If budget permits, it may be desirable to compare the measurement results (such as
PLR) with analytical results or software simulation resuits. The comparison results can
also be used to verify the switch operation.

6.5 Preliminary Test Procedure Considerations

In the SCAR Il design proposal, methodologies of generating test conditions mainly
consider the extensive use made of pattem generators and logic analyzers to act as packet
sources and sinks. Bit error rate test set could also be used to gain a measure of the
overall hardware performance. Additional test capabilities that are presently being
reviewed include various loopback capabilities in the input/output port modules. These
loopbacks may include near end loopbacks before and after the ECL line interface,
loopbacks before the switch module and far end loopbacks through the switch module
itself. Additional capabilities may be built into the switch module are to disable the real
time switch controller and to allow the CPU to have access to the switch control for static
establishment of switch connectivity paths. Additional test capabilities may include the
ability for scan registers within the various ALTERA designs and the ability to have the
control CPU readback the various registers used to configure the testbed. These read and
write capabilities could be executed from the testbed control processor via the RS232 port.
Additionally the ethernet interface may be used to down load various configuration and test
scenarios from a remote host computer. Extensive use of this interface will be made in the
downloading of code to the testbed control CPU during its initial debug.

Some of these tests will depend upon the design of the packet generator and sink
modules and the features incorporated within this module. The total capabilities are
presently being reviewed in light of the present budget and manpower restraints imposed
by SCAR Il proposal and the additional enhancements necessary allow the testbed to
operate at rates of about 155.52 Mbit/s.
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.Section 7
Conclusions

The design principles of different multicast switching architectures are reviewed, which
include a summary from Phase 1 report and some new multicast switching architectures.
Commercially available switching chips are surveyed for potential space applications. The
multicast crossbar switch is selected for subsequent breadboard development. The
multicast crossbar switch has the following advantages: it is commercially available, its
structure is simple, the switching fabric is point-to-multipoint nonblocking, and the
operation characteristics (such as power) are very suitable for on-board applications.
Different queueing approaches are reviewed. The input queueing strategy is selected for
easy implementation and low complexity. The selection matches with the recommendation
made in Phase 1 report.

Due to head of line blocking at the input queue, the packet switch throughput (for point-
to-point connections) can not exceed 58% for a larger N. To increase the switch
throughput, two efficient scheduling algorithms are identified. The first algorithm is to use
the basic centralized ring reservation scheme with a large checking depth. The second
algorithm is to use the centralized ring reservation scheme with future scheduling. The
final selection will be determined at the "High Level Design" task.

The header of SVPs contains the routing tag and other satellite network intemal fields
such as payload type and QOS. The routing tag is used to route through the on-board
switch. The routing tag is inserted in the SVP header at the earth station. For ATM
application, the VPI has a local significance in the satellite network. The VPI needs to be
retransliated at the earth station. However, no VPI retranslation is required at the on-boar
switch. Grouping of cells (or other types of traffic) should be based on the downlink beam if
there are a large number of terminals in the network. Grouping of cells (or other type of
traffic) should be based on the receiving earth station if there are a few, large earth stations
in the network. If single-size SVP is chosen for Phase 2 development, the SVP size should
be less than or equal to that of 4 cells. If the traffic foreseen is very diverse, then multiple-
size SVPs should be considered. There are four different sizes: single-cell SVP, 2-cell
SVP, 4-cell SVP and 8-ceil SVP. Two synchronization schemes are proposed. The first
follows synchronization method used in the TDM frame synchronization and a frame format
is required. The second follows the techniques used in the ATM cell header error control
synchronization (ATM cell self-delineation) and no extemal frame format is required. For
multicast multiple-size SVPs, the switch operation should allow call splitting and enforce
continuous transmission for the SVP packet through the switch. Final selection of SVP
format and synchronization scheme is determined at the "High Level Design" task.

Two types of priorities are proposed for subsequent development. The first is based on
the service type and the second is based on the loss priority. The service type priority is
used to distinguish the arrival packets are circuit switched or packet switched traffic. The
loss priority is applied to packet switched traffic only. The total number of priorities is three:
circuit data, high-priority packet data and low-priority packet data. There are three logical
subqueues at each input port, where one for each priority. When the packets arrive to the
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input port, the input port examines the QOS field and insert the packet to the proper
subqueue. The insertion/removal of the packets to/from the subqueue shouid be
implemented in a link list fashion. There is no upper limit for the circuit switched data
queue length and the high-priority queue length, but a limit is set for the low-priority queue
length. The basic centralized ring reservation scheme is modified to accommodate
packets with different priorities. The token streams will be sent to the input port three times
for three priorities. At each time, only the packets with the corresponding priority can
reserve the tokens (output ports). The checking depth for each subqueue will be
determined based on the traffic amount for each priority; the summation of the checking
depth of the subqueues at an input port is a constant.

Integration of circuit and packet switched traffic adopts the switch capacity reservation
scheme. The system capacity for circuit connections in one earth station is reserved each
frame. The circuit packets can be transmitted at any assigned slots at the sending terminal
in one frame. However, the circuit SVPs need to participate in output contention. The
delay jitter of circuit connections is bounded using priority control. A small amount of
queueing delay is experienced at the switch. A smoothing buffer is required at the
receiving terminal to compensate the delay jitter.

Different fault tolerant designs are investigated for the FPS. For the purpose of
demonstration, 1-for-N redundancy for input port, switching path, and output port will be
incorporated into the breadboard design. Software is built into the OBC to perform fault
detection, fault diagnosis, and fault reconfiguration.

Switching subsystem high-level functional requirements are identified. These
requirements serve as a functional specification for the "High Level Design” task. A
preliminary testbed configuration and test plans are also provided. The basic functions of
the FPS should be tested and verified. And then the switch performance should be
measured and analyzed.
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‘Appendix A

Queueing Equation
Derivation for Nonblocking
Switch with Input Queueing

A.1 Nonblocking Switch with Input Queueing

This subsection derives the throughput of a nonblocking switch with input buffering.
Assume the output contention resolution module chooses one packet among k packets
destined to the same output randomly, where 0 < k < N. The virtual queue concept is
introduced first. If a packet is selected by the output contention resolution module, it will be
transmitted to the destination at the next slot and will not enter the virtual queue. The
virtual queue is used to hold the packets which loses the output contention resolution. An
ilustration of the virtual queue concept is shown in Figure A-1.

Input Ports  Slot t Input Ports Slot t+1 Virtual Queue 0

[

Virtual Queue 4

Figure A-1: An Illustration of Virtual Queue Concept
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Define virtual queue i to consist of the HOL packets, which are not selected by the
output contention resolution module, from different input queues destined to output port i.

We analyze the behavior of the virtual queue i. Define Vim to be the number of packets in

virtual queue i at the end of the mth slot. Define Bim to be the number of arrival packets to

virtual queue i from different input ports during the mth slot. Define Fm to be the total
number of packets ieft virtual queue i during the mth slot. By definition,

Fm1=N- 2 ZB Take expectation, E [F] =N - N E [V].
Evidently, g—[—zﬂ] =T, where T is the throughput of the switch.

Therefore, E [V] = 1 - T. Assume the packet arrivals from different input ports to the
virtual queue follows the Bernoulli process. Then

PrE =K= (FT‘)(N) (1-—)F(""1)'k,k=0,1,....Fm—1.
Vi =max (0, Vi, +Bl -1)

0 when k = V! .
Define Ak =

T
<—-

1 when k

ThenV V +B

Use both sides of this equation as an exponent for z.

i i i
2V = Z(v'm_1 +B - 4K

i i i
Take expectation: E [sz] =E [Z(Vm-1 + Blm - Ak
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Vi @= D privi =i K=E [V )= 2k~ 40]
k=0

o0

= Zpr V!, + Bl =kl zk-Ak

k=0
=Pr[vl_ +Bl =0]200+ Zpr v+ Bl =Kzk1

. k=1

. . 1 -— . . 1 . .
=prvt  +B = ]+;2Pr [Vi,.q +Bh =Kl zk-5 Privl 4Bl =0]20
k=0 '

Note that Pr [V} + Bl =0]=1-T. Therefore,

Vi @=1T+iN @B @)-10D

Let m -> =, Vi (2) _T_(;‘(_?)(L_{Zl

The average tagged output queue length can be derived using the property of z-
transform.

avi (2)

E[V']-

lz=1

_(-TB@) + (T-H)(1-2)BOZ) _N-1__ T2
“2[B0)(z)-112 + 2(B2)-2)B@(z) 2= N 2 (1 - 1)

E[V]_ 5 JQ Ty when N ->eo,

T2
1- T=—2—(—1-—_-=r—), when N ->co,

T=2-42=0.586.
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A.2 Nonblocking Switch with Input Queueing/Output
Queueing and Switch Speedup

This subsection derives the throughput of a nonblocking switch with inpUt .
queueing/output queueing and a speedup factor 2 (i.e., S = 2). Follow the notations used
in Section A.1. Since there are two switch siots in one link slot, the queueing equation can

be derived using the switch slot as a unit. Define Vim_1 .m-0 5 10 be the number of packets in
virtual queue i at the end of the (m-0.5)th link slot and Vim-o.s-m to be the number of packets
in virtual queue i at the end of the mth link slot. Define Bim_1 .m-05 tobe the number of

arrival packets to virtual queue i during the (m-0.5)th link slot and Bim 05:m to be the

number of arrival packets to virtual queue i during the mth link slot. Define Fm-1;m-0.5 to be
the number of packets left virtual queue i during the (m-0.5)th link slot and Fm-0.5;m to be
the number of packets left virtual queue i during the mth link siot. For the pure output
queueing switch, the arrival process to the output queue is assumed to have a binomial
distribution. In this case, the arrival process to the output queue is replaced by Fm-1;m-0.5
and Fm-0.5;m for the mth link slot.

Following the procedure in Section A.1, it can be shown that the throughput is exactly 2

times larger than that of the pure input queueing. With a speedup factor S = 2, the
maximum achievable throughput of the switch is approaching to 1.
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